
Bayesian Inference for Challenging

Scientific Models

James A. Ritchie
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Doctoral Training in Data Science

School of Informatics

University of Edinburgh

2023

Abstract
Advances in technology and computation have led to ever more complicated

scientific models of phenomena across a wide variety of fields. Many of these

models present challenges for Bayesian inference, as a result of computationally

intensive likelihoods, high-dimensional parameter spaces or large dataset sizes.

In this thesis we show how we can apply developments in probabilistic machine

learning and statistics to do inference with examples of these types of models.

As a demonstration of an applied inference problem involving a non-trivial

likelihood computation, we show how a combination of optimisation and

MCMC methods along with careful consideration of priors can be used to infer

the parameters of an ODE model of the cardiac action potential.

We then consider the problem of pileup, a phenomenon that occurs in

astronomy when using CCD detectors to observe bright sources. It complicates

the fitting of even simple spectral models by introducing an observation model

with a large number of continuous and discrete latent variables that scales with

the size of the dataset. We develop an MCMC-based method that can work in

the presence of pileup by explicitly marginalising out discrete variables and

using adaptive HMC on the remaining continuous variables. We show with

synthetic experiments that it allows us to fit spectral models in the presence

of pileup without biasing the results. We also compare it to neural Simulation-

Based Inference approaches, and find that they perform comparably to the

MCMC-based approach whilst being able to scale to larger datasets.

As an example of a problem where we wish to do inference with extremely

large datasets, we consider the Extreme Deconvolution method. The method

fits a probability density to a dataset where each observation has Gaussian

noise added with a known sample-specific covariance, originally intended

for use with astronomical datasets. The existing fitting method is batch EM,

which would not normally be applied to large datasets such as the Gaia catalog

containing noisy observations of a billion stars. In this thesis we propose two

minibatch variants of extreme deconvolution, based on an online variation of

the EM algorithm, and direct gradient-based optimisation of the log-likelihood,

both of which can run on GPUs. We demonstrate that these methods provide

faster fitting, whilst being able to scale to much larger models for use with

larger datasets.

i

We then extend the extreme deconvolution approach to work with non-

Gaussian noise, and to use more flexible density estimators such as normalizing

flows. Since both adjustments lead to an intractable likelihood, we resort to

amortized variational inference in order to fit them. We show that for some

datasets that flows can outperform Gaussian mixtures for extreme deconvolu-

tion, and that fitting with non-Gaussian noise is now possible.

ii

Lay Summary
Modern scientific research often involves making computer models of natural

phenomena of interest. These models are used to check scientific theories, and

to make informed predictions about the world. Often these models have a

number of variables or parameters within them that need to be set. We can infer

the values of these parameters by comparing the output of the model to data

that we observe, then finding the values of the parameters that make the output

look most similar to the real data. This is referred to as fitting the model to data.

Bayesian inference is a particular branch of inference that is very useful for

certain modelling problems. It allows us to measure the degree of uncertainty

in both our inferences about the values of parameters and in the predictions we

make with these models.

It also allows us to make use of any prior beliefs we may have about the

values of particular parameters even before we see any data. For example,

a scientist may know that a particular variable must be limited to a certain

range of values, or that it must not stray too far from a particular central value.

Bayesian inference allows us to incorporate this knowledge into our inferences

in a principled manner.

Despite this, many scientific models can cause problems for Bayesian infer-

ence. This might be because we cannot do some of the calculations inside them

exactly, there are too many variables that we want to infer at once, or simply

because the necessary calculations take too long even for a powerful computer.

In this thesis we consider several of these sorts of problems, and we show that

by making use of recent developments in machine learning and statistics, we

can create workable solutions for some of these inference problems.

As an example problem, astronomers are often interested in counting the

number and energies of photons arriving at a telescope in order to characterise

stars, galaxies and other sources that emitted them. Unfortunately, a commonly

used sensor in many telescopes does not let them do this. Instead, it only reports

the total amount of energy received from the photons over a given amount of

time. Given a model of this process, it is hard to infer the parameters of it. Even

if there are only a few parameters describing the star or galaxy, there are a very

large number of parameters describing all of the different possible ways the

photons could have produced the total energy we observed.

iii

We show that by explicitly counting out all the possible numbers of photons,

we can then use a method from statistics that can work with large numbers of

parameters. We can use it to infer the possible energy values of each possible

photon. This information can then be used to infer the parameters describing

the star. We also show that it is possible to train a common machine learning

method called a neural network to learn the relationship between the parameters

of the star or galaxy and simulated data produced by the model. When given

real data, these neural networks can then tell us what they think the parameter

values most likely to have produced the data are.

Another problem we consider is how to fit a particular type of model to data

produced by the Gaia satellite. The satellite has made imprecise measurements

of the locations and speeds of over a billion stars in our galaxy, but the current

computer code to fit models to this type of imprecise data cannot cope with

the extremely large number of measurements. Fortunately, fitting models to

very large amounts of data is a common task in machine learning. We show

that by adapting some of the methods used to do this, it is possible to fit this

particular type of model in much less time than the previous method, and with

much larger datasets.

We then demonstrate that it is possible to fit a different type of model

called a normalising flow to the imprecise Gaia data. These normalising flows

are commonly used in machine learning, and make use of neural networks

internally. They do a better job of making predictions about the data than the

previous model, and we show that they can be used to refine the imprecise

measurement of the distance to a particular cluster of stars in our galaxy. We

also show that they can be used to predict the distance to a star based on its

colour.

iv

Acknowledgements
Even under the best possible circumstances, a PhD requires the support of many

people to complete successfully. This has never been been more true than when

a large proportion of the work involved took place during a global pandemic.

Firstly, I need to thank Iain Murray for advising me throughout my journey

to becoming a researcher. His insightful questions and eye for detail were

critical in helping clarify my thinking. Whenever the research seemed to have

reached a dead-end, he always had a suggestion for what to try next, and he

was almost always right.

Michael Gutmann and Joe Zuntz kindly agreed to form my review panel.

They offered their time to answer my questions, read my proposals and helped

keep me on track by ensuring I turned my vague ideas into a concrete plan that

would lead to completion. Daniel Mortlock and Amos Storkey served as my

examiners, and I am grateful to them for their questions and suggestions for

improvements.

Daniela Huppenkothen provided the initial idea to work on inference for

models with pileup. David Hogg confirmed that applying normalising flows

to deconvolution was a worthwhile idea, and helped us get started with the

Gaia catalogue. Tim Dockhorn was crucial in helping get an earlier version of

the variational inference work done as a workshop paper, and the results of his

experiments demonstrated that the idea was worth persevering with. Without

them this document would be a literature review and not a thesis.

The production of this thesis and all of the experiments within relied almost

exclusively on open-source software. The efforts of the countless contributors

to the many packages I used made this research feasible.

The staff of the Centre for Doctoral Training in Data Science and the School

of Informatics worked hard to ensure we could all focus on our research, and I

will be forever thankful. I am particularly grateful to the CDT administrators

Sally Galloway, Sio Carroll and Sandra Nicol for making the programme run

smoothly.

Colleagues, acquaintances and friends from my office, my research group,

the CDT, Informatics and beyond helped make the days fly by. Our conver-

sations during coffee breaks, over lunch, and elsewhere never failed to cheer

me up. My only regret during this PhD is that so many of them could not be

v

in-person.

I am grateful to my parents Brian and Nicola, and my sister Anna. They

supported my decision to leave stable paid employment and return to academia.

More importantly, they raised me as part of a family that taught me to appreciate

the value of learning for its own sake.

Finally, the most important person throughout this entire experience has

been Lucy. I would not have finished this thesis without her continued support.

She started this journey with me by moving up to Edinburgh, and she finished

it with me as my wife. Thank you.

This work was supported in part by the EPSRC Centre for Doctoral Training

in Data Science, funded by the UK Engineering and Physical Sciences Research

Council (grant EP/L016427/1) and the University of Edinburgh.

vi

Declaration
I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or professional

qualification except as specified.

vii

To Lucy.

viii

Table of Contents

1 Introduction 1

1.1 List of Contributions . 4

2 Background 6

2.1 Bayesian Inference . 6

2.1.1 Likelihoods . 7

2.1.2 Priors . 9

2.1.3 Marginal Likelihood . 10

2.1.4 Expectations . 12

2.2 Markov Chain Monte Carlo . 13

2.2.1 Metropolis-Hastings . 14

2.2.2 Hamiltonian Monte Carlo 18

2.3 Diagnostics . 20

2.3.1 Potential Scale Reduction Factor 21

2.3.2 Effective Sample Size . 22

2.4 Density Estimation . 24

2.4.1 Gaussian Mixture Models 25

2.4.2 Normalising Flows . 26

2.4.3 Conditional Density Estimation 28

2.5 Simulation-Based Inference . 29

2.5.1 Posterior Estimation . 31

2.5.2 Likelihood Estimation . 33

2.5.3 Ratio Estimation . 34

3 Bayesian Inference for Ordinary Differential Equations 37

3.1 Introduction . 37

3.2 Methods . 38

ix

3.3 Likelihood . 39

3.3.1 Noise . 41

3.4 Prior . 41

3.5 Posterior . 43

3.5.1 Results . 45

3.5.2 Posterior Predictions . 48

3.6 Discussion . 48

4 Inference for Pileup Processes 51

4.1 Introduction . 51

4.2 Model . 54

4.3 Posterior . 55

4.4 Prior Choice . 55

4.5 Markov Chain Monte Carlo . 57

4.5.1 Marginalisation . 58

4.5.2 Hamiltonian Monte Carlo 59

4.5.3 Reparametrisation . 60

4.5.4 Experiments . 61

4.6 Simulation Based Inference . 70

4.6.1 Background . 70

4.6.2 Summary Statistics . 72

4.6.3 Experiments . 73

4.7 Computational Efficiency . 80

4.8 Censored Data . 82

4.8.1 MCMC . 82

4.8.2 SBI . 84

4.8.3 Comparison . 85

4.9 Line Spectrum . 87

4.10 Discussion . 94

4.10.1 Accuracy . 94

4.10.2 Flexibility . 95

4.10.3 Computational Performance 97

4.10.4 Diagnostics . 97

4.10.5 Conclusion . 98

x

5 Scalable Extreme Deconvolution 100

5.1 Introduction . 100

5.2 Background . 101

5.2.1 Expectation-Maximisation 102

5.3 Methods . 105

5.3.1 Minibatch Expectation-Maximisation 106

5.3.2 Stochastic Gradient Descent 108

5.4 Experiments . 109

5.4.1 Synthetic Data . 110

5.4.2 Gaia Data . 112

5.4.3 Pitfalls . 117

5.5 Discussion . 120

6 Extreme Deconvolution with Variational Inference 124

6.1 Introduction . 124

6.2 Background . 125

6.3 Theory . 125

6.3.1 Variational Inference . 126

6.3.2 Importance Weighting . 132

6.4 Experiments . 132

6.4.1 Synthetic Data . 132

6.4.2 Astrometric Gaia Data . 140

6.4.3 Astrometric and Photometric Gaia Data 145

6.5 Discussion . 150

6.5.1 Related Work . 151

7 Conclusion 153

Bibliography 155

A Experimental Details for Chapter 5 171

A.1 Synthetic Data . 171

A.2 Astrometric Data . 171

B Experimental Details for Chapter 6 173

B.1 Synthetic Datasets . 173

B.2 Gaia Datasets . 174

xi

Chapter 1

Introduction

Bayesian inference has been used effectively to estimate the parameters of

scientific models in a wide variety of fields, including astronomy (Bailer-Jones

et al. 2021), virology (Obermeyer et al. 2022), economics (Meager 2019) and

public health (Burnett et al. 2018). Despite this widespread usage, there are still

many models which present issues for the application of Bayesian inference as

a result of computationally intensive likelihoods, high-dimensional parameter

spaces or large dataset sizes. Fortunately, recent advances in statistics and

probabilistic machine learning offer potential solutions to the problems these

models present. In this thesis we consider some of the issues around applying

these newer techniques to several models which present challenges for Bayesian

inference.

Many Bayesian inference techniques are not trivial to implement. A huge

driver in the adoption of Bayesian inference has therefore been the availability

of high-quality software packages. In particular, probabilistic programming

languages such as BUGS, Stan, PyMC3 and Pyro aim to allow practitioners

to concentrate on modelling by providing an interface for specifying models,

whilst automating as much of the inference procedure as possible (Lunn et al.

2000; Carpenter et al. 2017; Salvatier, Wiecki, and Fonnesbeck 2016; Bingham

et al. 2019). A key enabler of these probabilistic programming languages and

other inference approaches is the availability of algorithms that require minimal

interaction from the user in order to run (Hoffman and Gelman 2014; Kucukelbir

et al. 2017; Foreman-Mackey et al. 2013). They also typically integrate diagnos-

tics that can alert the user to issues with the inference procedure. Any newer

approaches to inference should aim to replicate these goals of abstracting away

1

Chapter 1. Introduction 2

the mechanics of inference and providing self-tuning methods and diagnostics.

A frequent issue in many modelling problems is that there are often multiple

techniques available to do inference, but a lack of comparative work to guide

practitioners as to which method to choose for a particular problem. As an

example, there are several different ways one could approach the problem

of inferring the parameters of an ordinary differential equation (ODE) in a

Bayesian manner (Girolami 2008; Macdonald and Husmeier 2015; Lueckmann,

Goncalves, et al. 2017). We propose a workflow for inferring the parameters of

a model of the cardiac action potential by combining existing methods (Simitev

and Biktashev 2011). The effectiveness of our approach was validated when

it achieved first place in an inference competition which attempted to resolve

how best to handle this problem (MacDonald 2018).

As another example of an area where which technique to use is not obvious,

we consider the problem of inferring spectral models for astronomy in the pres-

ence of a phenomenon known as pileup (Ballet 1999). Pileup complicates the

fitting of even simple spectral models by introducing a large variable number

of discrete and continuous latent variables that scales with the size of the data.

By marginalising out the discrete variables, we show that is possible to sample

from the posterior of a small synthetic problem with pileup using Hamiltonian

Monte Carlo (HMC, Duane et al. 1987; Neal 2011).

As a comparison, we also consider some newer simulation-based inference

(SBI) techniques that make use of neural networks. We consider some of the

issues around configuring and checking them, and demonstrate that some of

the techniques can produce comparable inferences to the HMC method, whilst

being more scalable. We then extend both the HMC and SBI techniques to more

realistic spectral models.

As many of the neural SBI techniques lack theoretical guarantees and self-

diagnostics, checking their inferences are correct is critical. As an example

demonstrating that the flow of ideas in this thesis is not only in the direction

from machine learning to statistics, we show that commonly used convergence

diagnostics used with Markov chain Monte Carlo (MCMC) methods can also be

applied to neural SBI methods. Whilst not a sufficient condition for correctness,

these diagnostics can detect issues that would otherwise require much more

expensive calibration checks.

Sometimes we only wish to fit relatively simple models, but the explosion

Chapter 1. Introduction 3

in the availability of data renders existing implementations inadequate. New

methods are required to allow our inference techniques to scale up to these

datasets. As an example, the Hipparcos mission was a satellite that produced

noisy astrometric measurements of 118,218 stars (Perryman et al. 1997). Extreme

deconvolution is a method for fitting Gaussian mixture models (GMMs) as

density estimators to noisy data, originally intended for use with the Hipparcos

dataset (Bovy, Hogg, and Roweis 2011).

The successor misson to Hipparcos, Gaia, currently provides around 1.46×
109 noisy measurements (Babusiaux, Fabricius, et al. 2022). Whilst the existing

reference implementation of extreme deconvolution could theoretically handle

this dataset using a specialised computer with an extremely large quantity of

memory, it would be impractically slow to run, and we would ideally like to

be able to fit these sorts of models using more standard workstations. One

way of doing this is to borrow ideas from the large-scale optimisation methods

commonly used in machine learning (Bottou, Curtis, and Nocedal 2018). By

making use of minibatch methods, automatic differentiation and GPU-based

computation, we show that we can fit extreme deconvolution models to data

from the Gaia catalogue with comparable density estimates, but with much

faster convergence and far lower memory requirements. Using simple synthetic

examples we also highlight some issues that a practitioner may encounter when

fitting these types of model.

With the availability of more data, we can also start to think about adopting

more flexible models. Normalising flows are an alternative class of density

estimator to GMMs, and have demonstrated the ability to accurately model

high-dimensional datasets, including large collections of image data (Papa-

makarios, Nalisnick, et al. 2021; Kingma and Dhariwal 2018). Unfortunately

we cannot use them as a direct replacement for GMMs in the context of density

estimation with noisy data, as the standard objective function used by extreme

deconvolution only has an analytical solution for GMMs with Gaussian noise.

We show instead that we can fit them as density estimators for deconvolu-

tion by leveraging advances in amortized variational inference (Kingma and

Welling 2013; Rezende, Mohamed, and Wierstra 2014). By fitting normalising

flows using this method to an extended sample of the Gaia catalogue, we show

that they can provide superior density estimates for certain tasks. We use the

fitted models to construct a colour-magnitude diagram (CMD) from the Gaia

Chapter 1. Introduction 4

catalogue, and refine noisy distance measurements to the M67 cluster.

1.1 List of Contributions

1. In Chapter 3, we provide a workflow for inferring the parameter of an

ordinary differential equation modelling the cardiac action potential.

2. In Chapter 4, we derive an MCMC-based method that can allow us to do

inference of spectral models in the presence of pileup. This allows the

use of Bayesian analyses for this problem, a specific example of the more

general class of problems involving compound Poisson distributions. We

evaluate and check its calibration on a simple synthetic problem. We also

use this problem to evaluate newer neural SBI methods, which we find to

be comparable to the MCMC-based approach whilst being more scalable.

We evaluate the methods on more realistic models. We also show that

standard convergence diagnostics used with MCMC methods can also be

used with neural SBI methods.

3. In Chapter 5, we propose two minibatch variants of the widely used ex-

treme deconvolution method by using an online version of the expectation-

maximisation algorithm and stochastic gradient descent. These improve-

ments allow the method to scale to much larger datasets than was pre-

viously possible. Using a selection of astrometric data from the Gaia

catalogue, we show that both methods provide comparable density esti-

mates to the existing reference implementation, whilst being much faster

to train. An early version of this chapter was published as a workshop

paper (Ritchie and Murray 2019).

4. In Chapter 6, we show that the Extreme Deconvolution method can be

extended to work with non-Gaussian noise and alternative density esti-

mators by using variational inference. This allows the use of much more

flexible density estimators such as normalising flows. We fit a normalising

flow to an extended dataset from the Gaia catalogue using this method,

which results in better density estimation than a Gaussian mixture model.

As an example application of our fitted normalising flow, we use it to

produce a denoised Colour-Magnitude Diagram and to refine distance es-

Chapter 1. Introduction 5

timates to the M67 cluster. An early version of this chapter was published

as a workshop paper with Tim Dockhorn as a joint first co-author (Dock-

horn et al. 2020). All of the work, writing and experiments included in

the chapter has subsequently been redone by us.

Chapter 2

Background

In this chapter we present a review of the statistical and machine learning

techniques we will be using in later chapters to enable Bayesian inference

for the problems we are considering. We assume some basic familiarity with

statistics and machine learning. We start with a brief introduction to Bayesian

inference in general, then cover Markov chain Monte Carlo methods as well as

some of their diagnostics. Finally we provide a review of density estimation,

and cover some recent approaches to Simulation Based Inference that make use

of density estimators.

We use the notation p(x) to denote a probability distribution over x both as

an abstract entity in itself, and more specifically to denote the probability density

function (PDF) of that distribution. p(y | x) denotes a probability distribution

over y conditioned on the value of x, and pϕ(x) denotes a distribution with

parameters ϕ that we wish to optimise for a specific task.

2.1 Bayesian Inference

Bayesian inference is a method of inferring the parameters of a probabilistic

model given some observed data that we believe to have been generated by

the model. We formalise this belief through the posterior distribution p(θ | D),
a probability distribution over parameters θ given the data D. This posterior

distribution can be derived from Bayes’ Rule, itself derived from the product

and sum rules,

p(θ | D) = p(D | θ)p(θ)
p(D)

. (2.1)

6

Chapter 2. Background 7

It relies on the more general interpretation of probability as a measure of

belief rather than the frequency of outcomes in repeated experiments (Jaynes

2003, Chapter 1). The prior distribution p(θ) represents our beliefs about the

parameters before we have seen any data. Bayes rule then represents the logical

updating of our beliefs about the parameters after we have seen the data via

the likelihood p(D | θ). The resultant posterior distribution p(θ | D) represents

our beliefs about the parameters after we have seen the data.

This use of Bayes’ rule gives rise to the name of Bayesian inference. Simply

using Bayes’ rule does not necessarily mean a statistical model is considered

Bayesian. As an example, the naive Bayes classifier makes use of Bayes Rule

internally to make predictions with uncertainty on unknown labels. It does not

use Bayes rule to infer a distribution describing any beliefs about the parameters

of the model, and is thus not typically considered “Bayesian” as such (Murphy

2012, Chapter 3). Generally an approach is considered “Bayesian” if it uses

the posterior distribution to quantify the uncertainty in our beliefs about some

unknown parameters.

Throughout this section we will use a synthetic classification problem as a

working example. Figure 2.1 plots 2D data separated into two classes, which

we wish to use to infer the parameters of the logistic regression model.

2.1.1 Likelihoods

The likelihood p(D | θ) is a function of the model parameters θ. Given θ, it

describes the probability of observing the data D. It is often expressed as the

probability of observing some aspect of D under some tractable distribution

such as a Gaussian or Categorical distribution. The parameters of this tractable

distribution are arbitrary functions of the model parameters θ, and possibly

also some other aspect of the data D.

For the logistic regression example, the parameters would be a vector of

weights w and a bias term b. Given a dataset D = {xi, yi}Ni=1 consisting of

N pairs of predictor vectors xi and a binary variable yi indicating a class, the

likelihood of the parameters given one pair is

p(yi | xi,w, b) = Bernoulli(yi | logit−1(wTxi + b)) (2.2)

The Bernoulli distribution is the discrete probability distribution which pro-

duces y = 1 when sampled with probability q and y = 0 with probability

Chapter 2. Background 8

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2
Class 0
Class 1

Figure 2.1: Scatter plot of labelled 2-class data which we wish to use to infer

the parameters of a logistic regression model.

1− q (Murphy 2012, Chapter 2). The function logit−1 is the inverse logit func-

tion (sometimes called the sigmoid function) and is defined as (Murphy 2012,

Chapter 1)

logit−1(a) =
1

1 + e−a
. (2.3)

It maps unconstrained values a into the range [0, 1], and is necessary to ensure

that the parameter q of the Bernoulli is appropriately constrained.1 The total

likelihood given the entire dataset is

p(D | θ) =
N∏
i=1

Bernoulli(yi | logit−1(wTxi + b)). (2.4)

We consider xi to be a known deterministic variable, hence why it appears as a

conditioner in p(yi | xi,w, b) despite being part of the data D.

1Other functions to do this mapping can be used. The inverse logit function is the so-called
canonical link function for the Bernoulli distribution (Murphy 2012, Chapter 9).

Chapter 2. Background 9

2.1.2 Priors

Having specified the parameters we are interested in, we need to define our

beliefs over their possible values before we have seen any data. We do this by

defining a distribution of the parameters p(θ), referred to as the prior distribution

or just the prior. It is common to use a tractable distribution for which we can

easily evaluate the PDF and sample from.

As an example if we knew that a parameter had to be bounded between two

limits, but had no other information, we might choose a uniform distribution

as a prior.

p(θ) = Uniform(a, b). (2.5)

Another option is to use a normal distribution as a prior with mean µ and

standard deviation σ,

p(θ) = N (µ, σ2). (2.6)

A common choice with a normal prior if we have some idea about the scale of

the parameter is to set µ = 0 and σ to the order of magnitude we expect the

parameter to be on.

A frequent philosophical objection to Bayesian inference is the need to spec-

ify priors, with this being seen as a subjective process which somehow prevents

the data from “speaking for themselves” (Gelman, Carlin, et al. 2014, Chapter 2).

This objection is correct that specifying priors is a subjective process, but fails to

recognise that so are all of the other modelling choices we make (MacKay 2003,

Chapter 3)! For the logistic regression example, we make the assumption that

the likelihood was best described by a Bernoulli distribution parametrised by a

linear function of xi, and that xi was not a random variable.

Given that we cannot avoid making subjective assumptions, it therefore

makes sense to be as explicit as possible about those assumptions. Specifying

our prior beliefs as a distribution forces us to make our assumptions clear. It

requires us to justify our choices, and allows others to criticise them.

Having specified a prior and likelihood, a common way of describing the

resultant model is to write it down as series of sampling statements. These sam-

pling statements describe the model process that we think generated the data.

For our logistic regression model with normal priors, the sampling statements

Chapter 2. Background 10

would be

b ∼ N (0, σ2
b), (2.7)

w ∼ N (0, σ2
w), (2.8)

yi ∼ Bernoulli(logit−1(wTxi + b)), i ∈ [1..N]. (2.9)

We can use this generative process to reason about our prior choices by

running a prior predictive check (Gabry et al. 2019). The procedure works by

drawing a number of samples from the prior, then generating simulated data

or other quantities from those samples. By inspecting the distribution of these

quantities, we can reason about what data our model considers plausible.

Consider trying to select a standard deviation σw for the prior p(w) on the

weights with the logistic regression example. In the absence of other informa-

tion, we might think that setting σw = 100 would prevent the parameters from

being overly constrained. We can run a prior predictive check by sampling from

the prior, then computing the Bernoulli probabilities for each datapoint. The

left plot in Figure 2.2 shows a histogram over probabilities with 1000 samples

from this prior, with σb = 1 The histogram shows us that our model expects

the data to be almost always perfectly separable, and there would be no point

in trying to fit a logistic regression model to it. The right hand plot shows the

same histogram, but now with σw = 1. The simulated data now looks much

more reasonable, with a range of probabilities possible.

2.1.3 Marginal Likelihood

The denominator in Equation 2.1 is sometimes referred to as the evidence or

marginal likelihood. The latter term arises as it is can be found by marginalising

the likelihood under the prior,

p(D) =
∫

p(D | θ)p(θ) dθ. (2.10)

This integral is what makes Bayesian inference challenging for many problems.

For limited combinations of likelihood and prior, this integral will have a closed-

form. The priors in this case are referred to as conjugate priors, as the posterior

distribution will be in the same family of distributions as the prior (Gelman,

Carlin, et al. 2014, Chapter 2).

Chapter 2. Background 11

0.0 0.2 0.4 0.6 0.8 1.0
logit 1(wTx + b)

0

5

10

15

20

25

p(
lo

gi
t

1 (
w

T x
+

b)
)

w = 100

0.0 0.2 0.4 0.6 0.8 1.0
logit 1(wTx + b)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p(
lo

gi
t

1 (
w

T x
+

b)
)

w = 1

Figure 2.2: An example of doing a prior predictive check for the logistic regres-

sion example. With the prior standard deviation σw = 100, our model expects

data that is almost always entirely perfectly separable. With σw = 1 the range of

possibilities is more reasonable.

Chapter 2. Background 12

For most models (including the logistic regression model) there is no closed-

form. If we want to evaluate the integral directly, we will need to use numerical

methods. The computational cost of doing this scales exponentially with the

dimensionality of θ, and is only feasible for very small dimensionalities (MacKay

2003, Chapter 21). The inability to evaluate p(D) exactly prevents us from

evaluating the PDF of the posterior straightforwardly. 2

2.1.4 Expectations

Bayesian inference is often stated in such a way as to make it seem like the

ultimate goal is to find or approximate the posterior distribution. In reality

expectations of functions under the posterior are more generally useful than the

posterior itself, especially if we wish to make decisions based on our inferences.

The expectation of a function f(θ) under the posterior is defined as

Ep(θ|D)[f(θ)] =

∫
f(θ)p(θ | D) dθ. (2.11)

A common expectation of interest is the posterior mean of the parameters,

Ep(θ|D)[θ]. Other expectations of interest may include certain quantiles of the

parameters under the posterior, or the difference between two particular quan-

tiles. Unfortunately, in general we cannot compute Equation 2.11 as we cannot

in general compute p(θ | D). Even if we could compute p(θ | D) or an approx-

imation to it, the integral would still be intractable for similar reasons as for

Equation 2.10.

Most of the value of a posterior expectation in high dimensions is dominated

by a volume of the posterior distribution support referred to as the typical set, a

concept borrowed from information theory (MacKay 2003, Chapter 4). Loosely

defined, the typical set is the volume between the tails of the posterior (where

the volume is large but the density is low) and the mode of the posterior (where

the density is high but the volume is small). The fraction of the posterior

support occupied by the typical set decreases as the dimensionality of the

support increases.

Fortunately, if we could draw samples from p(θ | D) (or its approximation),

we can compute an approximation solution to these expectations using Monte

2It is possible to approximate the marginal likelihood directly, and methods which do this
are often used for model comparison (Llorente et al. 2023).

Chapter 2. Background 13

Carlo integration (MacKay 2003, Chapter 29),

Ep(θ|D)[f(θ)] ≈
1

S

S∑
s=1

f(θs), θs ∼ p(θ | D). (2.12)

One important class of posterior expectations that are frequently of interest

are those that predict the values of new unseen variables D̃ given observed data

D. This can be done by computing the expectation of the likelihood under the

posterior,

p(D̃ | D) =
∫

p(D̃ | θ)p(θ | D) dθ, (2.13)

≈ 1

S

S∑
s=1

p(D̃ | θs), θs ∼ p(θ | D). (2.14)

This distribution is often referred to as the posterior predictive distribution (Gel-

man, Carlin, et al. 2014, Chapter 5). If we expect to use this distribution fre-

quently, it is common to store a set of samples {θi}Ni=1 from the posterior rather

than resampling whenever we need to make a prediction.

In the logistic regression case, the posterior predictive distribution for new

samples x̃ can be approximated as

ws, bs ∼ p(w, b | {xi, yi}Ni=1), (2.15)

p(ỹ | x̃, {xi, yi}Ni=1) =
1

S

S∑
s=1

Bernoulli(ỹ | logit−1(wT
s x̃+ bs)), (2.16)

which for the specific case ỹ = 1 is

p(ỹ = 1 | x̃, {bxi, yi}Ni=1) =
1

S

S∑
s=1

logit−1(wT
s x̃+ bs). (2.17)

Deferring the question of how we obtained the samples to Section 2.2, Figure 2.3

plots p(ỹ = 1 | x̃, {bxi, yi}Ni=1) as a function of x̃ for the logistic model.

2.2 Markov Chain Monte Carlo

Despite not being able to evaluate the PDF of a posterior in general, is possible

to produces samples from the posterior. One such way of doing this is to use

Markov chain Monte Carlo (MCMC) methods (Chapter 29 MacKay 2003). We

only need to be able to evaluate the unnormalised posterior density

p⋆(θ | x) = p(D | θ)p(θ). (2.18)

Chapter 2. Background 14

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2
Class 0
Class 1

0.0

0.2

0.4

0.6

0.8

1.0

p(
y

=
1

x,
)

Figure 2.3: The posterior predictive distribution for the logistic regression model

as a function of x. Also plotted is the data used to infer the parameters and

predictive distribution. Even with a fine grid computing all of the Monte Carlo

approximations to the expectation took less than a second.

This sampling is done by iteratively constructing a Markov chain of samples

{θs}Ss=1, where the sample θs+1 depends only on θs. There are many algorithms

than can construct such a chain where the samples correspond to draws from

p(θ | D) (MacKay 2003, Chapters 28-29). Here we only consider the Metropolis-

Hastings method, and an extension of it, Hamiltonian Monte Carlo.

2.2.1 Metropolis-Hastings

The Metropolis-Hastings method is a standard MCMC method which is straight-

forward to implement (Hastings 1970). Given the current state of a chain θs, we

can sample from a tractable distribution q(θ′ | θs) to get a new proposed state θ′.

θ′ ∼ q(θ′ | θs) (2.19)

Chapter 2. Background 15

We then evaluate the unnormalised posterior density with the new proposed

state and compute the quantity

a =
p⋆(θ′ | x)q(θs | θ′)
p⋆(θs | x)q(θ′ | θs)

(2.20)

a is referred to as the acceptance ratio. If a ≥ 1, we set θs+1 = θ′. If a < 1, we set

θs+1 = θ′ with probability a, and otherwise set θs+1 = θs,

u ∼ Uniform[0, 1], (2.21)

θs+1 =

θ′ if u ≤ a

θs if u > a
. (2.22)

Intuitively this works because samples in higher density regions of p(θ | D) are

more likely to be accepted compared to samples from lower density regions.

As we usually start each chain at a point sampled from a distribution other

than the posterior, it may take some time for our chain to reach the typical set.

It is therefore necessary to discard some fraction of the start of the chain as

burn-in or warm-up, sometimes as much as half of the chain (Gelman, Carlin,

et al. 2014, Chapter 11). As each sample depends on the previous sample, unless

the proposal distribution is very efficient, successive samples will be correlated

over a given timescale. This means that the effective sample size is typically

smaller than the actual number of samples.

A typical choice for q(θ′ | θs) is a diagonal Gaussian centred around θs with

standard deviation σq,

θ′ ∼ N (θ′ | θi, σ2
q). (2.23)

In this case, the proposal distribution is symmetric, q(θ′ | θs) = q(θs | θ′), and

the acceptance ratio simplifies to

a =
p⋆(θ′ | D)
p⋆(θs | D)

. (2.24)

This simplified version is the Metropolis algorithm (Metropolis et al. 1953).3

Careful selection of the value of σq is necessary to get the method to perform
3There is some controversy around the naming of the algorithm. Edward Teller stated in

his memoirs that all of the authors worked for “days (and nights)” on the publication (Teller
and Schoolery 2009). Marshall Rosenbluth contradicts this, stating that whilst Edward Teller
provided an initial crucial suggestion, it was Marshall who did the theoretical work, acknowl-
edging several helpful conversations with John von Neumann (Gubernatis 2005). Marshall also
recalled that Augusta Teller started writing the computer code, then Ariana Rosenbluth took it
over and rewrote it from scratch, whilst Nicholas Metropolis’ only contribution was providing
computer time. So perhaps it should be called the Rosenbluth-Teller method.

Chapter 2. Background 16

1

2

Target Distribution
Proposal Distribution
MCMC Samples

Figure 2.4: Sampling from an example posterior using the Metropolis method

after 50 steps. The target distribution features strong correlations, so the

diagonal Gaussian proposal distribution must have a relatively small standard

deviation in order to keep the acceptance rate around about 0.5. The chain can

only take small highly correlated steps, and is not close to the target distribution

even after 50 steps.

well. If it is too small, the chain will need to take a large number of steps to

fully explore the posterior. Too large, and most proposals will land outside of

the typical set and be rejected. If the posterior has strong correlations and/or

large lengthscales in some directions and small lengthscales in others, these

two requirements may be in conflict. Figure 2.4 shows an example of sampling

from a posterior with such strong correlations. This problem gets worse as the

dimensionality of the posterior increases, and for very high dimensions most

proposals will be outside the effective support of the posterior unless σ is very

small, requiring the chain to run for many steps (MacKay 2003, Chapter 29).

Figure 2.5 shows samples drawn using Metropolis-Hastings from the pos-

terior of the logistic regression model, with both prior σ values set to 1. We

visualise the samples by using a corner plot, which shows 2D histograms of

Chapter 2. Background 17

each pairwise combination of dimensions in θ along with 1D histograms show-

ing the marginal distribution of each dimension. Samples from the tails of the

distribution are plotted directly on the 2D histograms. The contours in the 2D

histograms contain an estimated 39%, 86% and 99% of the density respectively,

corresponding to the percentage of the density of a standard 2D Gaussian con-

tained by circles centred at the mean of radius 1, 2 and 3 (Foreman-Mackey

2016). Where available we also mark ground truth values, which give a rough

indication of whether the posterior approximation is reasonably behaved. We

use this format throughout this thesis.

1.2
0.9
0.6
0.3

w
1

0.8 0.4 0.0 0.4 0.8

b

0.2
5

0.0
0

0.2
5

0.5
0

0.7
5

w
2

1.2 0.9 0.6 0.3

w1
0.2

5
0.0

0
0.2

5
0.5

0
0.7

5

w2

Figure 2.5: Samples from the logistic regression posterior, visualised as a corner

plot using corner.py (Foreman-Mackey 2016). The vertical and horizontal lines

indicate the ground truth values used to generate the dataset. The posterior

has identified where the ground-truth parameters are, but is not totally certain

as to their exact location.

Chapter 2. Background 18

2.2.2 Hamiltonian Monte Carlo

As discussed, Metropolis-Hastings with a standard Gaussian proposal distri-

bution will struggle with high-dimensional posteriors, as most proposals will

land outside the typical set and will be rejected. If we could differentiate the

posterior PDF with respect to the parameters θ, we could use the resulting gra-

dients to explore the posterior. Hamiltonian Monte Carlo is an MCMC method

that uses these gradients to make efficient proposals which are more likely to

be accepted (Duane et al. 1987; Neal 2011). Here we follow the derivation of

MacKay (2003, Chapter 30) to provide a brief overview of the method. For a

comprehensive review of HMC and the adaptive variants see Betancourt (2018).

We assume the posterior can be written in the form

E(θ) = log p(D | θ) + log p(θ), (2.25)

p(θ | D) = e−E(θ)

Z
, (2.26)

where Z is the normalising constant. This is not a particularly restrictive as-

sumption as we generally express p⋆(θi | D) on a log-scale to avoid numerical

errors. We also assume that we can differentiate E(θ) with respect to θ, which

restricts HMC to working with posteriors over continuous parameters but is

otherwise easy to do using automatic differentiation (Baydin, Pearlmutter, et al.

2018).

HMC proposes new samples by treating the current sample as a particle on

a surface defined by E(θ) at position θs. By augmenting θs with a momentum

vector vs, we can then simulate the trajectory of this particle over the surface

defined by E(θ) using Hamiltonian mechanics. Formally, we define the Hamil-

tonian as the sum of a potential energy given by E(θ) and a kinetic energy

K(v),

H(θ,v) = E(θ) +K(v). (2.27)

This defines a joint distribution over θ and v

pH(θ,v) =
1

ZH

e−H(θ,v), (2.28)

=
1

ZH

e−E(θ)e−K(v). (2.29)

As this distribution is separable, the marginal distribution of θ is the posterior

distribution. A typical choice for the kinetic energy (without units) is

K(v) =
vTv

2
(2.30)

Chapter 2. Background 19

which defines a standard normal distribution over momentum

p(v) = N (v | 0, I). (2.31)

The trajectory of the particle over the surface E(θ) can be simulated by formu-

lating it as differential equation with derivatives

θ̇ = v, (2.32)

v̇ = −∂E(θ)

∂θ
(2.33)

and computing a solution using an Leapfrog numerical integrator.4 The initial

condition for the integrator is the current sample θs, with vs drawn from the

distribution defined by K(v). The integrator runs for L steps with stepsize

ϵ, producing a new proposal θ′,v′ at the end. If the numerical integrator was

perfect, the Hamiltonian would be conserved exactly and we would always

accept the final position of the particle as a new sample. In practice there will be

numerical errors in the trajectory, so we use a Metropolis accept-reject step with

a =
pH(θ

′,−v′)

pH(θs,vs)
(2.34)

If accepted, we can drop the proposed v′ as we are only interested in θ. Repeated

iterations of this process will asymptotically result in samples θs being drawn

from p(θ | D).
In practice the effectiveness of HMC is sensitive to the choice of number of

integrator steps L and the stepsize ϵ (Neal 2011). If L is too small, the trajectory

may not get very far when we apply the Metropolis accept-reject step when

it could have gone further. If it is too large, the trajectory may turn back on

itself and propose a new sample that is closer than the furthest away point it

reached. If ϵ is too large, the error in the trajectory will grow too large and the

proposal will be more likely to be rejected. If it is too small, the trajectory will

waste computation time taking unnecessarily small steps.

The no-U-turn sampler (NUTS) alleviates this issue by permitting the num-

ber of steps to be selected dynamically whilst the integration is running, and

by automatically tuning the step size during the warmup phase (Hoffman

and Gelman 2014). Subsequent improvements to the acceptance criteria and

4The choice of integrator matters (Betancourt 2018). It needs to be time-reversible (to satisfy
detailed balance) and symplectic (so the error does not grow with L) (Leimkuhler and Reich
2004). The leapfrog integrator satisfies both of these conditions.

Chapter 2. Background 20

1

2

Target Distribution
MCMC Samples

Figure 2.6: Sampling from the same posterior as in Figure 2.4 but this time

using adaptive HMC. Successive samples in the chain are much less correlated,

whilst the acceptance rate was 0.95.

warmup have lead to the term Adaptive HMC being used for the self-tuning

variant of HMC which is almost always used in practice (Betancourt 2016b;

Stan Development Team 2022). Figure 2.6 shows samples drawn from the same

distribution as Figure 2.4 using an implementation of adaptive HMC (Bing-

ham et al. 2019). Successive samples are less correlated than in Figure 2.4 as

the sampler is able to propose samples which are much further apart whilst

maintaining an acceptance rate of around 0.95.

2.3 Diagnostics

With MCMC methods it is typical to run multiple chains independently of each

other. By comparing the chains we can check for problems. Here we describe

two diagnostics we can use to check how well the chains are sampling from

the posterior. Note that whilst we define these diagnostics in terms of MCMC

methods, they could be applied to any method that can produce sequences of

Chapter 2. Background 21

samples from the posterior independently, an idea we revisit in Chapter 4.

2.3.1 Potential Scale Reduction Factor

The potential scale reduction factor R̂ provides an indication of whether a series

of chains have converged to the same stationary distribution (Gelman and

Rubin 1992). Here we follow the derivation given in Gelman, Carlin, et al. (2014,

Chapter 11), which contains improvements to the original formulation. It is

typically applied to scalar quantities of interest. To keep the notation simple we

assume that our parameter θ is a scalar but we could extend the calculations to

each element of θ if it were a vector, or to scalar functions f(θ).

The method works by comparing the variances within each chain to the

variances between each chain. To detect issues where a single chain has not

reached a stationary distribution, it is common practice to split each chain

in half after discarding the warmup samples and treat the halves as separate

chains (sometimes specifically referred to as split-R̂). After splitting we have M

chains each with N samples θnm. We calculate the between-chain variance B as

θ̄·m =
1

N

N∑
n=1

θnm, (2.35)

θ̄·· =
1

M

M∑
m=1

θ̄·m, (2.36)

B =
N

M − 1

M∑
m=1

(θ̄·m − θ̄··)
2. (2.37)

The within-chain variance W is calculated as

s2m =
1

N − 1

N∑
n=1

(θnm − θ̄·m)
2, (2.38)

W =
1

M

M∑
m=1

s2m. (2.39)

We can then estimate the variance of θ under the posterior var(θ | D) as a

weighted combination of B and W ,

v̂ar+(θ | D) = N − 1

N
W +

1

N
B. (2.40)

If the chains start with samples which are overdispersed relative to the posterior

(for example, because we started them with a sample from the prior and after

Chapter 2. Background 22

warmup the chain has not yet converged to a stationary distribution) then

v̂ar+(θ | D) will overestimate var(θ | D). If the chain starts with samples from

the posterior, or in the limit N →∞, it will be an unbiased estimator.

Meanwhile W will underestimate var(θ | D) for finite N as each chain has

not converged to the target distribution. In the limit N →∞ it will approach

var(θ | D). We can use these under-and-over estimates to compute the potential

scale reduction factor,

R̂ =

√
v̂ar+(θ | D)

W
, (2.41)

which estimates the scale by which the current distribution of θ might be

reduced if we continued the chains in the limit N → ∞. If R̂ is at or close to

1, it suggests that each chain has converged to the same distribution. What

constitutes a good value of R̂ has been subject to a process of “deflation” over

the years as better MCMC methods have been made available. Brooks and

Gelman (1998) suggest 1.2 as a threshold, Gelman, Carlin, et al. (2014, Chapter

11) state 1.1 whilst Vehtari, Gelman, Simpson, et al. (2021) treat anything greater

than 1.01 as suspicious. If after running a series of chains we find we have a

bad R̂, we can try running them again with an increased number of samples

and/or an increased number of warm-up samples. If this does not improve the

value of R̂, something is wrong and we should not trust expectations computed

with these samples.

2.3.2 Effective Sample Size

A related statistic is the effective sample size NESS. If the NM samples we use

to compute a Monte Carlo posterior estimate of the mean θ were independent,

then the Monte Carlo standard error (MCSE) on the mean is

MCSE(θ) =

√
var(θ | D)

NM
(2.42)

where var(θ | D) is the posterior variance of θ. If the samples are not indepen-

dent then the MCSE will be different. Again we follow Gelman, Carlin, et al.

(2014, Chapter 11) to describe an estimator for NESS.

Chapter 2. Background 23

The MCSE for the average of M correlated sequences of length N is

MCSE(θ) =

√
(
∑∞

t=−∞ ρt) var(θ | D)
NM

, (2.43)

=

√
(1 +

∑∞
t=1 ρt) var(θ | D)
NM

(2.44)

where ρt is the autocorrelation of θ at lag t,

ρt =
1

var(θ | D)
E[θnθn+t]. (2.45)

By equating Equation 2.44 to Equation 2.42, we can derive the equivalent

number of samples that would have given us the same MCSE if we had used

independent samples,

NESS =
NM

1 +
∑∞

t=1 ρt
, (2.46)

We can estimate this quantity by first computing the variance estimator v̂ar+(θ |
D) from Equation 2.40, then computing the variogram Vt as

Vt =
1

M(N − t)

M∑
m=1

N∑
n=t+1

(θnm − θ(n−t)m)
2, (2.47)

≈ E[(θn − θ(n−t))
2] (2.48)

By noting that E[(θn−θ(n−t))
2] = 2(1−ρt) var(θ | D) we can produce an estimate

of the autocorrelation ρt,

ρ̂t = 1− Vt

2v̂ar+(θ | D)
(2.49)

which in turn can be used to estimate NESS,

N̂ESS =
MN

1 +
∑∞

t=1 ρ̂t
. (2.50)

For larger values of t the estimate ρ̂t will be very noisy. This can be avoided

by truncating the summation over t in Equation 2.50 when the sum of two

successive values ρ̂t′+ρ̂t′+1 is negative. For convenience we denote the estimator

N̂ESS as NESS.

As well as using NESS to calculate the MCSE on estimates of the mean of θ,

we can use it as a diagnostic. If NESS does not increase as N increases, or the

ratio NESS
NM

is very small, it suggests that the chains are not doing a good job of

Chapter 2. Background 24

exploring the posterior and we should not trust expectations computed using

the samples.

In practice there are some pathological cases where both R̂ and NESS as

formulated here could indicate that a series of chains were behaving correctly

even though they had not converged. Vehtari, Gelman, Simpson, et al. (2021)

demonstrate these cases and provide alternative formulations based on rank

statistics and quantiles that are robust to these failures, but the principal is the

same. We use this improved formulation throughout this thesis, making use of

the implementation available in the ArviZ package (Kumar et al. 2019).5

The potential scale reduction factor R̂ only indicates if our chains have

converged to the same distribution, it does not tell us if that distribution is

actually the posterior p(θ | D). Simulation-based calibration (SBC) is a method

to help check whether software we have written is actually producing samples

from the posterior (Talts et al. 2020). We describe it in more detail in Chapter 4

and use it to check inference method implementations we have written.

2.4 Density Estimation

Fitting a tractable distribution to some target distribution using samples of x

from that target distribution is generically referred to as density estimation and

the distribution we fit to it is referred to as a density estimator. A typical density

estimator would be a distribution with parameters we can optimise to match

the target density. A simple distribution such as a Gaussian could be used as a

density estimator, but their limited flexibility makes them inappropriate when

we have a complex target distribution we need to approximate as accurately as

possible. In this section we describe two more flexible families of distributions

more suited for performing density estimation.

One application of density estimation is to use an estimator to approximate

a posterior distribution. We defer the discussion of how to actually do this

approximation in a specific case to Section 2.5.1, and for a more general case to

Chapter 6.

5There are actually two versions of the ESS presented by Vehtari, Gelman, Simpson, et al.
(2021). We use the version called bulk-ESS as it works as a convergence diagnostic although it
cannot be used to calculate the MCSE directly.

Chapter 2. Background 25

2.4.1 Gaussian Mixture Models

Gaussian mixture models (GMMs) take the form

qϕ(x) =
K∏
j=1

αjN (x | µj,Σj), ϕ = {αj, µj,Σj}Kj=1 (2.51)

where µj and Σj are the means and covariances of multivariate Gaussians which

make up the components of the mixture (Murphy 2012, Chapters 2, 11). The

mixture weights αj have the constraints αj ≥ 0,
∑K

j=1 αj = 1 in order to ensure

the GMM is a valid distribution.

GMMs are commonly thought of as an unsupervised learning technique

with the aim of identifying clusters that make up the observed data (Murphy

2012, Chapter 11). However, they can also be interpreted more generally as a

density estimator, using multiple components to approximate a more complex

distribution. Figure 2.7 shows an example of approximating a complex target

distribution using a two component mixture model. We discuss methods of

fitting GMMs in Chapter 5.

x

p(
x)

Target p(x)
1 (1, 2

1)
2 (2, 2

2)

Figure 2.7: Approximating a target density with a two component mixture of

Gaussians.

Chapter 2. Background 26

GMMs can perform well at density estimation in lower dimensions if the

target density is relatively smooth, and are well-suited to approximating multi-

modal distributions. As the dimensionality of the target distribution increases,

an exponentially larger number of components is needed in order to adequately

cover the support, limiting their ability to model high-dimensional densities.

They also perform poorly when the target density has sharp cut-offs.

2.4.2 Normalising Flows

Normalising flows are an alternative class of density estimator that can poten-

tially outperform GMMs, especially for higher-dimensional densities. They

leverage the flexibility of neural networks to approximate complex target den-

sities, and have successfully been used for problems such as the generative

modelling of images (Kingma and Dhariwal 2018). Here we provide a brief

introduction to them. For a more comprehensive review see Papamakarios,

Nalisnick, et al. (2021).

The core idea behind normalising flows is that we can represent x as an in-

vertible transformation T (z) of a sample z from some tractable base distribution

π(z).

z ∼ π(z), (2.52)

x = T (z). (2.53)

By the multivariate change-of-variables formula (Murphy 2012, Chapter 2), the

density q(x) is

q(x) = π(z)|det JT (z)|−1, (2.54)

= π(T−1(x))|det JT−1(x)| (2.55)

where JT (z) is the Jacobian matrix of T (z). In order for q(x) to be well-defined,

T (z) must be differentiable and must have an inverse T−1(x). Ideally |det JT (z)|
will also be straightforward to compute. The name “normalising flow” is

derived from the fact that the transformation T (z) allows density to flow from

the base distribution towards q(x), whilst the correction |det JT (z)| ensures that

q(x) still normalises to one.

If Tϕ(z) has parameters ϕ, we can fit qϕ(x) to a dataset of observed samples

Chapter 2. Background 27

{xi}Ni=1 from the target distribution p(x) by maximising the log-likelihood,

L(ϕ, {xi}Ni=1) =
N∑
i=1

log qϕ(xi), (2.56)

=
N∑
i=1

[
log π(T−1

ϕ (xi)) + log|det JT−1
ϕ
(xi)|

]
(2.57)

How well qϕ(x) can model p(x) will depend on how flexible Tϕ(z) is.

The detail in normalising flows is in finding good parametrisable families

of invertible transforms. Standard neural networks are flexible but cannot be

used directly as a transform because they are not generally invertible. One

way around this problem is to use a neural network fϕ(z) with parameters

ϕ that takes z as an input and outputs the parameters of a simpler invertible

transform that can be applied to each element of z such as an affine shift-and-

scale transform,

H ← fϕ(z), where H = {a,b}, (2.58)

x← exp(a)⊙ z+ b. (2.59)

The exponentiation (or other appropriate function) keeps the scale non-zero,

ensuring the transform is always invertible. More complicated transforms such

as that used in the neural spline flow allow for more expressive normalising

flows (Durkan, Bekasov, et al. 2019).

Care needs to be taken with how the neural network uses the input z in

order to keep the transformation invertible. One way of doing this is by using a

coupling transformation (Dinh, Sohl-Dickstein, and Bengio 2017). In a coupling

transformation, the first half of the vector z is copied straight to x. The neural

network then takes the first half of the vector z as input, and uses it to compute

the parameters of the transformations to be applied to the second half of z,

x1:d ← z1:d where d = D/2 (2.60)

H ← f(z1:d) where H = {a1:d,b1:d} (2.61)

xd:D ← exp(a1:d)⊙ zd:D + bd:D. (2.62)

When we need to invert the transform, the affine parameters a and b needed to

invert xd:D can be computed using x1:d.

Another way of ensuring an invertible transform is by enforcing an autore-

gressive structure on the neural net (Kingma, Salimans, et al. 2016; Papamakarios,

Chapter 2. Background 28

Base Distribution Transformation 1 Transformation 2 Transformation 3

Figure 2.8: Successive affine autoregressive transformations in a normalising

flow from a standard Gaussian base distribution towards a cross-shaped distri-

bution.

Pavlakou, and Murray 2017). With an autoregressive structure, the parame-

ters of the transformation applied to zd will only depend on the elements of

z preceding it, z1:(d−1). Autoregressive transforms are generally more flexible

than coupling transforms but require the neural network to be evaluated D

times when inverting the transformation in order to sequentially reconstruct

the input z (Papamakarios, Nalisnick, et al. 2021). This means that one of either

sampling from the flow with Equation 2.54 or evaluating the log-likelihood

with Equation 2.55 will be D times more expensive than the other operation.

Both transformations have the advantage of a lower-diagonal structured

Jacobian, which makes evaluating the determinant in Equation 2.54 have com-

plexity O(D) rather than O(D3) for a general Jacobian matrix. On their own

both coupling and autoregressive transforms are limited in their flexibility as

they strongly depend on the ordering of the elements in z. More expressive

transforms can be achieved by stacking multiple transformations together and

permuting the order of their elements in between transformations. Figure 2.8

shows an example of a flow with 3 stacked affine autoregressive transforma-

tions warping a standard Gaussian base distribution. The neural networks

inside each affine transformation step were trained jointly by maximising the

likelihood of samples drawn from a cross-shaped target distribution.

2.4.3 Conditional Density Estimation

We often wish to have a density estimator be conditional on some value. For

example, we may wish for a density estimator approximating a posterior p(θ |

Chapter 2. Background 29

D) to work with any value of D rather than one specific value. This is referred

to as conditional density estimation.

One way of accomplishing this is to train some function to output the

parameters of the density estimator when given the data as an input rather

than optimising the parameters directly. Given their ubiquity and flexibility,

a common choice is to use a neural network for this function. Appropriate

transformations can be used to ensure that the output parameters of the density

estimator are correctly constrained.

As a concrete example, to turn a GMM into a conditional density estimator,

we can fit a neural network that takes the dataD as input, and outputs the means

µj and covariances Cj for each component along with the mixture weights αj .

This is sometimes referred to as a mixture density network (MDN, Bishop 1994).

For a normalising flow, the data D can be provided as an additional input to

the neural network at each step of the flow.

2.5 Simulation-Based Inference

For many scientific modelling problems, we can write high-fidelity simulations

of the phenomenon we are interested in investigating. Formally, we have a

simulator f(θ) which takes parameters θ as inputs, and produces simulated data

x̂ as an output. We then wish to use this simulator to make inferences about

the parameters which produced some real observed data x. In the Bayesian

paradigm, this would involved placing a prior p(θ) on θ, then using the posterior

p(θ | x) to compute expectations of interest.

The simulator often (but not necessarily) produces stochastic outputs using

internal random numbers ϵ. If we are able to access and control the generation

of these random numbers, one possible approach would be to infer the full

posterior p(θ, ϵ | x) using any standard approximate inference method, using

the full likelihood p(x | θ, ϵ) (Graham and Storkey 2017; Baydin, Shao, et al.

2019). In many cases this is not actually practical, typically because we do not

have access to the internals of the simulator, the full posterior has pathological

aspects for our chosen approximate inference method, or simply because the

full likelihood is too computationally expensive to evaluate inside an inference

loop.

In such a scenario we must resort to treating the simulator as a black box

Chapter 2. Background 30

and assume we do not have access to the likelihood p(x | θ) and that we

cannot evaluate the posterior up to a constant. This leads to the common name

of likelihood-free inference (LFI), with the first method in this class referred

to as approximate Bayesian computation (ABC). There is a long history of

these methods being using for scientific inference, with comprehensive reviews

presented by Lintusaari et al. (2017) and Sisson, Fan, and Beaumont (2018). In

recent years there has been a trend towards referring to it instead as simulation-

based inference (SBI), especially in the work from the machine learning-adjacent

community (Cranmer, Brehmer, and Louppe 2020). The likelihood, whilst

not directly available, is still defined implicitly, and we are often directly or

indirectly attempting to estimate it.

In this section we present three different approaches to SBI that take ad-

vantage of recent advances in neural network-based density estimation and

classification techniques. For each approach, unless samples of provided param-

eters and simulated data are pre-provided, there is a question of how to select

parameters to simulate in order to generate training data. The distribution used

to do this is often referred to as the proposal distribution, denoted by p̂(θ).

If we wish to use our approximate posterior with a wide range of observed

datasets, then an obvious choice for the proposal distribution is the prior p(θ).

If however we only have one dataset we wish to do inference on, then it makes

sense to concentrate on learning the behaviour of the simulator around plausible

parameters that could have generated our observed dataset, and avoid wasting

computation on simulations and inference with parameters that were highly

unlikely to have generated the dataset.

A natural solution is to perform SBI over several sequential rounds. On the

first round we start by running the simulator with samples drawn from the

prior to generate training data. After fitting the approximate posterior to the

training data on each round, on the subsequent round we draw samples from it

to select parameters, adding them to the set of all simulations ran so far. In this

way our simulations are concentrated around plausible parameters as we refine

our approximate posterior. Algorithm 1 describes this generic approach, which

we denote by adding the prefix Sequential to each SBI variant name.

Chapter 2. Background 31

Algorithm 1 Generic Sequential SBI

Input: Data x, Prior p(θ), Simulator f(θ), Approximate Posterior qϕ(θ | x),
Simulations per Round N , Rounds T

p̂1(θ|x)← p(θ)

for t← 1, T do

for i← 1, N do

θt,i ∼ p̂t(θ|x)
x̂t,i ← f(θt,i)

end for

Update ϕ using [{θt′,i, x̂t′,i}Nn=1]
t

t′=1
▷ Use samples from all rounds so far.

p̂t+1(θ | x)← qϕ(θ | x) ▷ Use the current posterior to propose new

samples

end for

return qϕ(θ | x)

2.5.1 Posterior Estimation

With posterior estimation, we aim to fit a conditional density estimator qϕ(θ | x)
to directly estimate the posterior p(θ | x). If our training samples {θi, x̂i}Ni=1

were produced by using the prior p(θ) as a proposal distribution, then fitting

the conditional density estimator is simply a matter of finding the parameters ϕ

which maximises the log-likelihood of qϕ(θ | x), with loss function

L(ϕ, {θi, x̂i}Ni=1) = −
N∑
i=1

log qϕ(θi | x̂i). (2.63)

If qϕ(θ | x) takes the form of a neural network, then this process is typically

referred to as neural posterior estimation (NPE) (Papamakarios and Murray

2016).

A complication arises if we wish to use some proposal distribution p̂(θ) that

is not the prior when doing the sequential neural posterior estimation (SNPE)

variant. Directly maximising the log-likelihood over all of the training samples

will result in an estimator which does not target p(θ | x) but instead targets

p̂(θ | x) = p(x | θ)p̂(θ)∫
p(x | θ)p̂(θ)dθ

. (2.64)

This proposal posterior can be rewritten in terms of the original posterior and

Chapter 2. Background 32

prior by substituting for p(x | θ),

p̂(θ | x) = p(θ | x)p(D)
p(θ)

· p̂(θ)∫
p(x | θ)p̂(θ)dθ

, (2.65)

= p(θ | x) · p̂(θ)
p(θ)

· p(D)∫
p(x | θ)p̂(θ)dθ

, (2.66)

= p(θ | x) · p̂(θ)
p(θ)

· p(D)
p̂(x)

. (2.67)

Any density estimator trained on these proposals must be adjusted in order to

target the correct posterior, and there are multiple versions of SNPE which can

do this.

SNPE-A (Papamakarios and Murray 2016) trains the density estimator to

target the proposal posterior p̂(θ | x) using the loss from Equation 2.63, then

applies a correction step after fitting to target the posterior p(θ | x). So that the

correction step has a closed form solution, the prior p(θ) must be uniform or

Gaussian, density estimators used as proposal distributions at intermediate

steps must be (neural-network conditioned) Gaussians, and the final posterior

approximation can only be a Gaussian or mixture of Gaussians.

SNPE-B (Lueckmann, Goncalves, et al. 2017) instead targets p(θ | x) directly

when training, using an importance weighted loss,

LSNPE-B(ϕ) = −
N∑
i=1

p(θi)

p̂(θi)
log qϕ(θi | x̂i). (2.68)

Compared to SNPE-A, this has the advantage of having no restrictions on

the choice of prior or density estimator. However, the importance weights

p(θi)/p̂(θi) can be high variance, leading to slow training.

SNPE-C (Greenberg, Nonnenmacher, and Macke 2019) works by noting that

if qϕ(θ | x) estimates p(θ | x), then from Equation 2.67,

p̂(θ | x) ∝ p(θ | x) p̂(θ)
p(θ)

, (2.69)

and therefore

q̂ϕ(θ | x) ∝ qϕ(θ | x)
p̂(θ)

p(θ)
, (2.70)

= qϕ(θ | x)
p̂(θ)

p(θ)

1

Z(x, ϕ)
. (2.71)

We can fit qϕ(θ | x) using the loss function

LSNPE−C(ϕ) = −
N∑
i=1

log q̂(θi | x̂i), (2.72)

Chapter 2. Background 33

but to make q̂ϕ(θ | x) tractable, we need the normalisation constant

Z(x, ϕ) =

∫
qϕ(θ | x)

p̂(θ)

p(θ)
dθ. (2.73)

At first glance this integral seem infeasible, unless we restrict the forms of

qϕ(θ | x), p̂(θ) and p(θ) as with SNPE-A. However, we do not actually need

to use the exact form of p̂(θ) used to generate the samples, and can instead

consider a uniform categorical distribution P (θm) over a set of samples {θ′m}
M
m=1.

The integral in Equation 2.73 then reduces to a summation

Z(x, ϕ) =
M∑

m=1

qϕ(θ
′
m | x)

1

p(θ′m)
, (2.74)

and hence Equation 2.71 becomes

q̂ϕ(θ | x) =
qϕ(θ | x)/p(θ)∑M

m=1 q(θ
′
m | x)/p(θ′m)

(2.75)

Algorithm 2 describes the general process of fitting the SNPE variants using the

selected loss.

Algorithm 2 Sequential Neural Posterior Estimation

Input: Data x, Prior p(θ), Simulator f(θ), Approximate Posterior qϕ(θ | x),
Simulations per Round N , Rounds T

p̂1(θ|x)← p(θ)

for t← 1, T do

for i← 1, N do

θt,i ∼ p̂t(θ|x)
x̂t,i ← f(θt,i)

end for

ϕ← argminϕ LSNPE(ϕ, [{θt′,i, x̂t′,i}, p̂t′(θ | x)]tt′=1)

p̂t+1(θ | x)← qϕ(θ | x)
end for

return qϕ(θ | x)

2.5.2 Likelihood Estimation

Sequential neural likelihood estimation (Papamakarios, Sterratt, and Murray

2019, SNLE) builds on the idea that a density estimator can be used to ap-

proximate the likelihood p(x | θ) instead of the posterior (Wood 2010). At

Chapter 2. Background 34

the end of every round, we use all of the parameter samples and simulated

data {θi, x̂i}Ni=1 to train a conditional density estimator q̂ϕ(x | θ) by maximum

likelihood. Compared to SNPE it does not require a correction step to account

for the proposal distribution, but as it does not target the posterior directly an

MCMC method is required to sample from p(θ | x) ∝ q̂ϕ(x | θ)p(θ). Depending

on the simulator, it may be more or less difficult to get the conditional density

estimator to approximate the likelihood compared to the posterior. Algorithm 3

describes SNLE in detail.

Algorithm 3 Sequential Neural Likelihood Estimation

Input: Data x, Prior p(θ), Simulator f(θ), Approximate Likelihood q̂ϕ(x | θ),
Simulations per Round N , Rounds T

p̂1(θ|x)← p(θ)

for t← 1, T do

for i← 1, N do

θt,i ∼ p̂t(θ|x) ▷ Use MCMC to draw samples from q̂ϕ(x | θ)p(θ)
x̂t,i ← f(θt,i)

end for

ϕ← argmaxϕ
∑T

t′=1

∑N
i=1 log q̂ϕ(x̂t,i | θt,i)

p̂t+1(θ | x)← q̂ϕ(x | θ)p(θ) ▷ Only proportional to posterior

end for

return q̂ϕ(x | θ)

2.5.3 Ratio Estimation

Unlike SNPE or SNLE, ratio estimation methods for SBI do not require a density

estimator. They only require a probabilistic binary classifier with parameters

ϕ such as a logistic regression model or a neural network with a sigmoid

function on the output. Binary classification can be used to estimate density

ratios (Sugiyama, Suzuki, and Kanamori 2012). Using Bayes’ rule and assuming

an even distribution of positive and negative samples a-priori, we can express a

classifier that takes input x and outputs probability of belonging to the class

Chapter 2. Background 35

y = 1 as

p(y = 1 | x) = p(x | y = 1)

p(x | y = 1) + p(x | y = 0)
, (2.76)

=
r(x)

r(x) + 1
where r(x) =

p(x | y = 1)

p(x | y = 0)
. (2.77)

This means if we train a classifier to distinguish between samples of x drawn

from two distributions, we can estimate the ratio between the densities of the

two distributions.

Here we describe the ratio estimation method of Hermans, Begy, and

Louppe (2020) for use in SBI, referred to as sequential neural ratio estima-

tion (SNRE)-A. We can consider positive examples y = 1 as pairs of samples

(x̂, θ) drawn from the joint distribution p(x, θ) and negative examples y = 0

as pairs of samples (x, θ) drawn from the marginal distributions p(x̂) and p(θ).

Samples from the joint distribution can be created by sampling from the prior

p(θ) then running the simulator f(θ). Marginal samples θ are just samples from

the prior, whilst marginal samples x̂ can be generated by sampling the prior,

running the simulator then discarding the prior sample.

By training a binary classifier to distinguish between these jointly and

marginally drawn pairs, we can estimate the ratio

r(x, θ) =
p(x, θ)

p(x)p(θ)
, (2.78)

=
p(x | θ)
p(x)

. (2.79)

We can then evaluate an estimate of the posterior PDF

p(θ | x) = r(x, θ)p(θ) (2.80)

and draw samples from it using MCMC methods.

To make this into a sequential variant using a previous posterior as a pro-

posal distribution p̂(θ), the only thing that changes is that the joint distribution

is now p(x | θ)p̂(θ) and the ratio estimated is

r(x, θ) =
p(x, θ)

p̂(θ)
. (2.81)

This means that we can now only estimate the posterior PDF up to a constant

p(θ | x) ∝ r(x, θ)p(θ), (2.82)

Chapter 2. Background 36

Algorithm 4 Sequential Neural Ratio Estimation

Input: Data x, Prior p(θ), Simulator f(θ), Classifier pϕ(y | x, θ), Simulations

per Round N , Rounds T

p̂1(θ|x)← p(θ)

for t← 1, T do

for i← 1, N do

θt,i ∼ p̂t(θ|x) ▷ Use MCMC to draw samples from r(x, θ)p(θ)

x̂t,i ← f(θt,i)

θ′t,i ∼ p̂t(θ|x) ▷ No x̂ simulated

D ← {x̂t,i, θt,i, yt,i = 1}Ni=1 ∪ {x̂t,i, θ
′
t,i, yt,i = 0}Ni=1

end for

ϕ← argmaxϕ
∑2N

i=1 log p(yt,i | x̂t,i, θt,i), (xt,i, θt,i, yt,i) ∈ D
p̂t+1(θ | x)← r(x, θ)p(θ) ▷ Only proportional to posterior

end for

return pϕ(y | x, θ)

but this still allows us to use MCMC methods to sample from it. Algorithm 4

describes this variant of SNRE in detail.

Likelihood-free inference by ratio estimation (LFIRE) is an earlier approach

that estimates the ratio in Equation 2.79 using a logistic regression classifier that

only takes x as input, requiring a new classifier to be trained for every value of

θ. (Thomas et al. 2021). Durkan, Murray, and Papamakarios (2020) extended

the approach of SNRE-A by changing the binary classifier into a multi-class

classifier and posing the ratio estimation problem as a problem of determining

which of K samples θk generated a given value x. By doing this they note

similarities with the SNPE-C loss given in Equation 2.75. This variant is referred

to as SNRE-B (Tejero-Cantero et al. 2020).

Chapter 3

Bayesian Inference for Ordinary

Differential Equations

3.1 Introduction

Differential equations are a useful way of modelling many processes, for exam-

ple in systems biology (Jones, Plank, and Sleeman 2009). Despite their ubiquity,

how best to do statistical inference with them is an open question. Competitive

statistical inference for differential equations 2018 (Cside) was a competition that

aimed to start resolving this problem (MacDonald 2018). In this chapter we

present our entry to the competition, building on the basic example presented

in Chapter 2 by providing a worked example of how to do Bayesian inference

for a non-trivial scientific modelling problem.

As a demonstration problem for ordinary differential equations (ODEs),

the competition organisers provided as data a noisy output from a system of

coupled ODEs modelling the cardiac action potential, along with an implemen-

tation of the ODE solver used to generate the data (Simitev and Biktashev 2011).

Competitors were asked to submit estimates of the parameters that generated

the data, along with an estimate of the underlying noise-free ODE output. By

retaining the ground truth parameters until after the competition had finished,

the organisers were able to simulate a real inference problem without access

to these parameters whilst being able to quantitatively judge the parameter

estimates.

Here we show how we constructed our solution to the competition as a

Bayesian inference problem by specifying a likelihood and prior. We describe

37

Chapter 3. Bayesian Inference for Ordinary Differential Equations 38

how we used the emcee MCMC sampler to draw samples from the posterior,

and discuss some of the practical details required to do so. Whilst none of the

individual components of our procedure are novel, the best way to do inference

for ODEs is not certain (as evidenced by the creation of the competition). This

chapter is intended as a extended worked example rather than advocating

for our method as the best way of approaching this problem (which would

require the presentation of a more rigorous head-to-head comparison between

methods), but our solution was effective enough to enable us to obtain first

place in the ODE track of the competition, beating several alternative methods.

3.2 Methods

There are a large variety of methods available to do Bayesian inference with

models using ODEs. Perhaps the most straightforward is to treat an ODE

inference problem as a generic Bayesian inference problem. We specify priors

over the parameters and compute the likelihood using a numerical ODE solver,

then use samples from a standard MCMC method to approximate the posterior,

as in Section 2.2.

We might wish to extend this approach further by using an adaptive HMC

method, as in Section 2.2.2. This requires an implementation of an ODE solver

which is differentiable. Many libraries implementing adaptive HMC provide

such solvers as part of their framework for specifying models (Stan Develop-

ment Team 2022; Salvatier, Wiecki, and Fonnesbeck 2016).

These direct methods require running a numerical ODE solver, which is

potentially computationally expensive. Gradient matching is a method which

avoids this requirement (Macdonald and Husmeier 2015). A surrogate model is

fitted directly to the observed data, then the gradients of the observed data are

estimated from the surrogate model. These estimated gradients are then used

to fit the differential equations directly. This avoids the problem of running

the solver, but replaces it with an additional statistical problem of inferring the

gradients from noisy data.

Finally, we could make use of a simulation-based inference (SBI) approach

as described in Section 2.5. Using SBI approaches to infer ODE parameters (in

the context of epidemiological models) has been described as a “paradigmatic

use case” (Lueckmann, Boelts, et al. 2021). In this context it would involve

Chapter 3. Bayesian Inference for Ordinary Differential Equations 39

treating the ODE solver as a simulator with an implicit or explicit surrogate

model fitted to it. This would still require running the ODE solver to produce

training data for the surrogate model, but it might be possible to approximate

the posterior with fewer evaluations of the solver.

3.3 Likelihood

Before deciding which approach we will use, we need to consider the model we

are using. The output of the cardiac model is a time series with three channels

consisting of a trans-membrane voltage E and two gating variables h and n

collectively denoted as vector y with dimension D = 3. The derivatives that

define the model are simplified from the original paper (Simitev and Biktashev

2011), and are given as

∂E

∂t
= GNa(ENa − E)1(E − E⋆)h+ g̃2(E)n4 + G̃(E), (3.1)

∂h

∂t
= Fh(1(E† − E)− h), (3.2)

∂n

∂t
= Fn(1(E − E†)− n), (3.3)

where 1(·) is the Heaviside step function and

g̃2(E) = g211(E† − E) + g221(E − E†), (3.4)

G̃(E) =


k1(E1 − E), E ∈ (−∞, E†),

k2(E − E2), E ∈ [E†, E⋆),

k3(E3 − E), E ∈ (E⋆,+∞),

(3.5)

E2 = (
k1
k2

+ 1)E† −
k1
k2

E1, (3.6)

E3 = (
k2
k3

+ 1)E⋆ −
k2
k3

E1. (3.7)

The scalar parameters of these equations we wish to infer are

θ = {k1, k2, k3, E1, ENa, E†, E⋆, Fh, Fn, GNa, g21, g22}. (3.8)

Given parameters θ we can run the ODE model by passing θ and implemen-

tations of Equations 3.1–3.3 to a numerical integrator or ODE solver denoted by

f(θ) to produce an output {yt}Tt=1 at a set of pre-specified times. We also need

to provide a set of initial conditions y0 for the solver to start from. In the context

Chapter 3. Bayesian Inference for Ordinary Differential Equations 40

0 200 400 600 800
Time t (ms)

100

50

0

Vo
lta

ge
 (m

V
)

Transmembrane Voltage

0 200 400 600 800
Time t (ms)

0.00

0.25

0.50

0.75

1.00

G
at

e
va

lu
e

Gating Variables

h
n

Figure 3.1: Sample output from the ODE solver for a given set of example param-

eters. Each channel has large changes occurring over a range of timescales.

of the Cside competition these were known and fixed at y0 = [−10, 1, 0]T . If

we did not know them, we could treat them as additional values to be inferred

alongside θ.

Figure 3.1 shows an example output for a given set of sample parameters.

We can see that in some parts the output changes rapidly over short timescales,

and in others the output changes slowly over a longer timescale. The com-

bination of varying timescales and stepwise Heaviside functions makes this

a so-called stiff ODE. If we were to run this ODE with a standard solver, the

numerical integrator would be forced to take very many small timesteps inter-

nally to produce an accurate solution. Instead a dedicated stiff ODE solver can

run the model accurately with fewer timesteps. For the competition we used

the reference implementation provided, which makes use of Matlab’s ode15s

solver (Shampine and Reichelt 1997). In doing so we eliminated the potential

for model misspecification, which is useful in the context of the competition,

but unrealistic for real applications.

Chapter 3. Bayesian Inference for Ordinary Differential Equations 41

3.3.1 Noise

The data available to estimate the parameters θ consists of a noisy sample

D = {ŷt}Tt=1 of the output of the ODE rather than the noise-free version {yt}Tt=1.

The noisy series is generated by adding zero-mean Gaussian noise ϵtd to the

noise-free output

ϵtd ∼ N (0, σd), (3.9)

ŷtd = ytd + ϵtd. (3.10)

The standard deviations needed to be inferred along with the parameters, but

were known to be set such that

Var[ytd]
σ2
d

≈ 10, (3.11)

reflecting the fact that for a real experiment we would generally have a rough

idea of the signal-to-noise ratio.

Figure 3.2 shows a plot of the provided data. A visual inspection shows

that we can roughly identify where each signal is and where the significant

changepoints are, but identifying the exact values of the signal is challenging.

Given the parameters θ and the noise scales σd, the total likelihood is given

by

p(D | θ,σ) =
T∏
t=1

3∏
d=1

N (ŷtd | f(θ)td, σ2
d) (3.12)

where f(θ)td is dimension d of the output of the ODE integrator at time t. The

requirement to run an ODE solver makes evaluating the likelihood a compar-

atively computationally expensive operation. In addition, many parameter

settings will result in the ODE solver failing to converge within a specified

tolerance. The practical solution to this problem is to return a likelihood of zero

if the solver fails.

3.4 Prior

Having considered the likelihood, we now need to choose appropriate priors

p(θ). Even without being experts in mathematical physiology, we can still ex-

tract useful information from the original paper describing the model (Simitev

and Biktashev 2011). The first thing to note is that many of the parameters

Chapter 3. Bayesian Inference for Ordinary Differential Equations 42

0 200 400 600 800
Time t (ms)

100

50

0

50

Vo
lta

ge
 (m

V
)

Transmembrane Voltage

0 200 400 600 800
Time t (ms)

0.0

0.5

1.0

G
at

e
va

lu
e

Gating Variables

h
n

Figure 3.2: Scatter plot of the supplied data. The approximate behaviour of the

ODE can be determined visually, but identifying exactly where each signal lies

is challenging.

are constrained. Parameters k1, k2, k3, Fh and Fn are constrained to be pos-

itive, g21 and g22 are negative, and there is an ordering constraint such that

E1 < E† < E⋆. In general, most optimisers and samplers work best with uncon-

strained variables, so we apply appropriate transforms to make the parameters

unconstrained. We denote the unconstrained version of the parameters θ as θ̃.

We could choose put priors on the constrained parameters θ, then apply the

appropriate change-of-variables correction to get p(θ̃). Instead we placed priors

directly on the unconstrained transformed parameters, which helps keep the

implementation simple.

The second thing to note from reading the original paper is that many of

the parameters have units of measurement attached to them. As an example,

all of the E parameters have units of millivolts. Given this and the context (a

model of a single cell in the heart), it seems unlikely that we would see values

on the order of gigavolts. Therefore a reasonably informative default prior is to

set Gaussian priors on each unconstrained parameter with means and scales

such that the constrained parameters are restricted to plus or minus one order

Chapter 3. Bayesian Inference for Ordinary Differential Equations 43

Table 3.1: Unconstrained parameters and Gaussian prior values for the model.

Unconstrained Parameter Mean Scale

log k1, log k2, log k3 -2 1

E1, ENa 0 100

log(E† − E1) 2 1

log(E⋆ − E†) 3 1

logFh 0 1

logFn -2 1

GNa 0 100

log(−g21) 0 1

log(−g22) 1 1

log σ1 1 1

log σ2, log σ3 -1 1

of magnitude of the sample parameters given in the paper. Table 3.1 reports the

unconstrained parametrisation and prior values used for each parameter.

Given that we do not know the exact value of the signal-to-noise ratio (SNR)

defined in Equation 3.11, we will also need to infer the values of σd. We could

exploit the fact that we know the SNR is around about 10 and set an informative

prior on it, but for simplicity we instead choose to set priors directly on the

values of σd on the log-scale.

3.5 Posterior

From Bayes’ rule, the posterior over the parameters is proportional to the prior

multiplied by the likelihood,

p(θ̃,σ | D) ∝ p({ŷt}Tt=1 | θ̃,σ) p(θ̃,σ) (3.13)

To prevent numerical underflow, it is typical to work on a log-scale,

log p(θ̃,σ | D) = log p({ŷt}Tt=1 | θ̃,σ) + log p(θ̃,σ) + C (3.14)

where C is a constant with respect to θ̃ and σ corresponding to the intractable

log marginal-likelihood log p(D).

Chapter 3. Bayesian Inference for Ordinary Differential Equations 44

Given an implementation of this target function equal to the log-posterior

up to a constant, we need to choose which method we will use to approximate

the posterior. We have no reason to believe the posterior can be reasonably

approximated with a Gaussian distribution, which rules out methods such as

the Laplace approximation (Laplace 1774; Stigler 1986). Instead, we wish to

use an MCMC-based approach to draw samples from the posterior, which we

can use to infer the distribution of parameters and make predictions about

the output. The likelihood is relatively expensive to evaluate, so we want any

Markov Chain to propose successive samples which are as uncorrelated as

possible to avoid wasting computation. We suspect the posterior may have

strong correlations, so any sampler would ideally account for this when making

proposals. The provided implementation of the ODE solver which we use

to evaluate the likelihood is not differentiable, which prevents us from using

Hamiltonian Monte Carlo (HMC, Duane et al. 1987; Neal 2011).

These criteria lead us to choose emcee (Foreman-Mackey et al. 2013), an imple-

mentation in Python of the Affine Invariant MCMC Ensemble sampler (Good-

man and Weare 2010). emcee works by running a large number of chains in

parallel, making proposals for each chain using the current positions of all the

remaining chains, and does not require the target function to be differentiable.

Provided the dimensionality of the posterior is not too high (on the order of

10), using spread out chains in this manner allows emcee to roughly estimate

the shape of the posterior and make reasonably spaced proposals (Huijser,

Goodman, and Brewer 2022). It does not in general require much tuning of

parameters to work well. In our case the posterior only spans 15 dimensions,

so we would expect emcee to work reasonably well.

To use any MCMC sampler, we need to select starting points for each chain.

Random samples from an arbitrary distribution are unlikely to work well for

this problem, as the parameters result in degenerate solutions from the ODE

solver. Samples from the prior are better, but most still result in solver output

that looks nothing like the data. Instead, we find the maximum-a-posteriori

(MAP) estimate by finding the value of the parameters that maximises the target

density function. As our model is not differentiable we use Powell’s method,

a derivative-free optimiser, to find the optimum (Powell 1964). We then add

a small amount of Gaussian noise to the estimate to produce slightly different

starting points for each chain.

Chapter 3. Bayesian Inference for Ordinary Differential Equations 45

Table 3.2: Estimates of the parameters θ, along with the effective sample size

NESS and the potential scale reduction factor R̂. The highest density posterior

interval (HDPI) limits are for a 94% interval.

Mean SD HDPI-L HDPI-U NESS R̂

k1 0.14 0.04 0.07 0.21 876148.00 1.01

k2 0.10 0.04 0.04 0.17 941552.00 1.00

k3 0.14 0.05 0.07 0.22 331.00 1.03

E1 -64.11 1.15 -66.24 -61.91 784711.00 1.01

ENa 60.46 5.63 49.94 71.11 989449.00 1.00

E† -58.52 2.82 -63.46 -53.19 618448.00 1.03

E⋆ -23.57 3.01 -29.21 -17.83 934756.00 1.00

Fh 0.37 0.07 0.26 0.50 759410.00 1.01

Fn 0.01 0.00 0.01 0.02 960131.00 1.00

GNa 30.04 17.63 1.43 61.22 887429.00 1.00

g21 -7.38 1.99 -11.23 -3.95 751634.00 1.01

g22 -3.76 1.50 -6.45 -1.39 596981.00 1.03

With the starting points, we ran emcee with 50 parallel chains for 10,000 steps.

We repeated each run a total of 4 times. After sampling, we discarded the first

half of each chain as burn-in. To check the posterior estimates have converged,

we computed the potential scale reduction factor R̂ for each parameter, as

well as the effective sample size NESS (Vehtari, Gelman, Simpson, et al. 2021).

It is important to note that R̂ cannot be computed directly from the parallel

chains from one run of emcee. The calculations for R̂ require the chains to be

independent, which is not the case for the parallel chains. Instead we flatten the

chains from one run and treat them as a single chain, applying the R̂ calculations

over the 4 repeated runs. We also ran our procedure with (our own) simulated

data using multiple sets of parameters to check we could recover them.

3.5.1 Results

Table 3.2 reports our estimates of the parameters using summary statistics

computed from our posterior samples, along with the diagnostic values. In

general our posterior distribution has shrunk the estimates relative to the prior,

Chapter 3. Bayesian Inference for Ordinary Differential Equations 46

and most of the diagnostic statistics look good. The only exception is k3, where

the effective sample size NESS is very small relative to the number of samples

drawn N , and the potential scale reduction value R̂ is away from 1.0. Increasing

the number of samples does not substantially improve the diagnostic values

for k3, suggesting the sampler is having difficulties with moving the value of it.

In an idealised situation we would put a more informative prior on k3, which

often helps solve sampling difficulties (Gelman, Vehtari, et al. 2020).

Figure 3.3 shows a corner plot of the posterior samples, along with the

ground-truth values of the parameters used to generate the data. We did not

have access to the ground-truth parameters at the time of sampling. Our poste-

rior samples have identified all of the parameters, with the possibly exception

of k3, although the ground-truth value is still within the tails of the posterior dis-

tribution. Whilst this plot alone is not sufficient to show the correctness of our

procedure (which would require a more exhaustive calibration check as done

in Chapter 4), it does indicate that our posterior samples are not unreasonable.

We can see there are some strong correlations, and the posterior looks very

non-Gaussian in places, justifying our decision to use an MCMC method.

The competition format required us to submit estimates of the parameters

in two forms:

1. A single point estimate for each parameter, judged by the weighted root

mean square error relative to the ground-truth parameters.

2. A mean and full covariance for all of the parameters, in order to judge

our method’s ability to quantify uncertainty. This estimate was judged by

calculating the likelihood of the ground-truth parameters under a multi-

variate Gaussian distribution with the estimated mean and covariance.1

For the first estimate form, we submitted the posterior mean of our parameters,

as this would minimise the expected square error. For the second estimate form,

we took advantage of Bayesian inference’s natural quantification of uncertainty

and submitted the empirical mean and covariance of our MCMC samples. As

we noted the posterior is very non-Gaussian, in doing so we are throwing away

1One flaw with this measurement as a competition criteria is that a competitor could
deliberately submit underestimates of the uncertainty. There is an increased risk that the
ground-truth parameters would be outside of your uncertainty estimate, but the payoff would
be a higher score if the ground-truth parameters were still within your estimate.

Chapter 3. Bayesian Inference for Ordinary Differential Equations 47

k 1
k 2

k 3
E 1

E N
a

E
E

F h
F n

G
N

a
g 2

1

k1

g 2
2

k2 k3 E1 ENa E E Fh Fn GNa g21 g22

Figure 3.3: Corner plot of samples from the posterior, with markers indicating the

ground-truth parameter values. All parameters are within reasonable credible

intervals, except for k3 which is still within the tails of the posterior.

Chapter 3. Bayesian Inference for Ordinary Differential Equations 48

information about the uncertainty in our estimates, but this a problem with the

competition criteria rather than our method.

3.5.2 Posterior Predictions

A common task in Bayesian inference is use our posterior over parameters to

make predictions about unseen data. For the competition, as well as submitting

estimates of the parameters, we also needed to submit point estimates of the

underlying values y used to generate the noisy observed data ŷ, to be judged

by the root mean squared error relative to the ground-truth signal. As with

the parameter estimates a sensible choice for a point estimate of y is just the

expectation of y under the posterior,

Ep(θ|D)[y] = Ep(θ|D)[f(θ)] (3.15)

≈ 1

N

N∑
i=1

f(θi), θi ∼ p(θ | D). (3.16)

As f(θ) is a non-linear function, in general Ep(θ|D)[f(θ)] ̸= f(Ep(θ|D)[θ]). We could

rerun the ODE solver f(θ) for every value θ after sampling to compute this

expectation. Instead, as we needed to run the solver to compute the likelihood,

it makes sense to return the output inside the MCMC sampling routine and

save it for later use. Figure 3.4 shows a plot of the 94% highest-density interval

over y using our posterior samples, along with the actual values of y generated

from the unknown ground-truth parameters.

As our posterior did a good job of estimating the ground-truth parameters,

the interval almost entirely contains the ground-truth values of y. We were not

required to submit estimates of the uncertainty in y, but we could have done so

if needed at no extra cost.

3.6 Discussion

The effectiveness of our method was externally validated by our estimates

winning first place in the competition. Nevertheless there are several aspects of

our procedure that could be improved on, and alternative solutions are possible.

Our priors are only very weakly informative, as they only restrict the param-

eters away from implausibly large values. We ran prior predictive checks, where

Chapter 3. Bayesian Inference for Ordinary Differential Equations 49

0 200 400 600 800
Time t (ms)

100

50

0

50

E
(m

v)

Transmembrane Voltage

0 200 400 600 800
Time t (ms)

0.00

0.25

0.50

0.75

1.00

G
at

e
Va

lu
e

Gating Variables

h
n

Figure 3.4: ODE solution using the ground-truth parameters use to generate

the noisy data. The shaded regions indicate the 94% highest density interval

computed from the posterior samples. The ground-truth solution almost entirely

lies within our interval.

we draw samples from the prior and use them to simulate data (Gabry et al.

2019). These resulted in ODE outputs that whilst having reasonable values cor-

responded to degenerate solutions where the model collapses almost instantly

to a steady state and where many of the parameters are unidentifiable. This

issue also causes problems for inference checking methods such as simulation-

based calibration (SBC) as they rely on generating data via simulation using

prior draws (Talts et al. 2020). If we had better expert knowledge we could

have more informative priors, although given the number of parameters and

complexity of the model it would still be hard to specify them as distributions.

Model checking is not absolutely critical in the case of the competition,

because we happen to know that the ODE solver exactly matches the data

generating process. For real applications this is almost never the case, and we

would like to know how well our model matches the data. One standard way

to do this would be with a cross-validation procedure, with variants available

that are designed to work for Bayesian inference (Vehtari, Gelman, and Gabry

Chapter 3. Bayesian Inference for Ordinary Differential Equations 50

2017). The inference problem as described here presents a challenge for cross-

validation, as we effectively only have one independent datapoint as a result of

only performing one run of the ODE solver. In a situation with real observed

data, it would be advisable to obtain multiple observations where possible.

The fact that our posterior samples contain the ground-truth parameters

as show in Figure 3.3 is a necessary but not sufficient condition for them to be

correct. Running simulation-based calibration (SBC) checks as done in Chapter 4

would give us more confidence that our posterior samples are correct (Talts

et al. 2020).

emcee would struggle if the parameter space was much larger. HMC can

allow MCMC to scale to larger dimensional spaces, but requires us to take

gradients with respect to the parameters (Duane et al. 1987; Neal 2011). This

was not possible with the provided ODE solver by default, but other solvers

are differentiable. We tried running this problem in the Stan probabilistic

programming language, making use of its implementations of differentiable

ODE solvers and adaptive HMC. We were unable to get it to work, as the warm-

up phase required to tune the HMC parameters would fail due to the large

number of degenerate and failed ODE solutions encountered. More informative

priors could help here by restricting infeasible parameters.

Chapter 4

Inference for Pileup Processes

4.1 Introduction

In this chapter we consider another class of model where there are multiple

techniques available to do inference, and no obvious solution. Pile-up is a

phenomenon that occurs in astronomy when using charge-coupled device

(CCD) detectors to observe bright sources (Ballet 1999). We would like to

measure both the arrival times and energies of photons emitted by astronomical

sources in order to characterise their spectrum and intensity. CCDs allow us

to do this, by measuring the energy of each photon when they interact with a

pixel of the CCD sensor. However, they can only measure the total amount of

energy absorbed across a given time interval, rather than the energy of each

individual photon. If multiple photons arrive during a single time interval, the

CCD cannot disambiguate the energy of each, or even determine the number of

photons. Figure 4.1 shows an illustration of this process.

There are a variety of changes to experimental setups that can be made to

minimise the probability of pile-up occurring, but these typically involve trade-

offs that reduce the quantity or quality of the data that can be collected (Chandra

X-ray Science Center 2010). Consequently, it is desirable to be able to analyse

data that has been affected by pile-up. The standard approach to fitting spec-

trums using data is to bin the data into a histogram over observed energies,

compute a histogram over expected energies for a given spectrum model, and

then find model parameters that minimise a goodness-of-fit statistic such as the

χ2 statistic (Arnaud, Smith, and Siemiginowska 2011, Chapter 5). If pileup is

known or suspected to be present, then the spectrum model can incorporate a

51

Chapter 4. Inference for Pileup Processes 52

Arrival Time (s)
0.0

0.5

1.0

1.5

2.0

E
ne

rg
y

0 2 4 6 8 10
Time

0.0

0.5

1.0

1.5

2.0

To
ta

l O
bs

er
ve

d
E

ne
rg

y

Figure 4.1: Illustration of the CCD pile-up process. The top plot shows energies

and arrival times of photons from a hypothetical astronomical source that are

observed by a single CCD pixel. The bottom plot shows the binned data actually

read out from the CCD sensor as a result of summing the photon energies in a

single timestep together.

pileup component (Davis 2001).

If we assume that the photons counts can be modelled by a Poisson distribu-

tion, then the pile-up generating process is a specific example of the general class

of compound Poisson distributions. Compound poisson distributions have

been used for a wide variety of modelling problems. For example, in hydrology,

if the number of rainfall events in a day is assumed to be Poisson distributed,

and the amount of rain per rainfall event is exponentially distributed, then the

total amount of rainfall per day has a compound Poisson distribution (Revfeim

1984). Similarly, the total claim value for insurance applications can be modelled

by assuming the number of claims is Poisson distributed and the value per

claim is gamma distributed (Smyth and Jørgensen 2002). In this chapter we

propose Bayesian inference methods for problems involving compound Poisson

distributions, using (very simplified) models of pile-up as working examples.

Closed-form expressions for the probability density function of a compound

Chapter 4. Inference for Pileup Processes 53

Poisson distribution exist only for certain distributions over the summand

terms, such as the gamma distribution (Jorgensen 1987). This is particularly

problematic for doing Bayesian inference with general compound Poisson

distributions, as it will require the count variables and summand terms to be

included in the posterior distribution. Sampling from such a posterior using

MCMC methods in order to compute expectations under it is not trivial. The

support of the posterior covers a variable high-dimensional parameter space,

of which some are discrete, which causes issues for many MCMC methods.

As this is a problem for which we can easily develop a simulator, an alterna-

tive option is to make use of recent advances in the field of simulation-based

inference (SBI), which only require the ability to simulate data for a given model

and a set of parameters for it (Cranmer, Brehmer, and Louppe 2020). In the SBI

literature the default assumption is that the likelihood function is completely

intractable and unavailable, leading to the alternative name of likelihood-free

inference (LFI). For many problems this is not actually the case, but the likeli-

hood function has certain aspects which makes it difficult to use with inference

methods such as MCMC which require access to it. Probabilistic programming

tools such as Stan (Carpenter et al. 2017), PyMC3 (Salvatier, Wiecki, and Fonnes-

beck 2016) and Pyro (Bingham et al. 2019) can make it much easier to implement

these difficult likelihood functions and use them with scalable MCMC methods.

An example of this from a different scientific field is the problem of inferring the

parameters of susceptible-infected-recovered (SIR) models used in epidemiol-

ogy, which has been described as a “paradigmatic use case” for SBI (Lueckmann,

Boelts, et al. 2021). For many SIR models MCMC-based approaches are in fact

viable and have been used effectively for models which inform public health

policy. (Scott et al. 2020; Moore, Rosato, and Maskell 2021; UK Health Security

Agency 2022).

The pileup observation model is another of this class of problems for which

the likelihood function is not quite intractable enough to rule out MCMC-based

approaches, but sufficiently complicated that SBI-based approaches might still

be worth doing. In this chapter we develop an MCMC-based solution to prob-

lems involving pileup that bypasses the problematic aspects, and evaluate

it using a range of experiments with simulated data. We also evaluate sev-

eral standard SBI methods using the same experiments. We compare both

approaches in terms of accuracy, flexibility, computational cost and diagnostics.

Chapter 4. Inference for Pileup Processes 54

We find that SBI approaches (particularly those using ratio estimation) can be

comparable in terms of accuracy whilst being easier to implement and having

favourable scaling properties when used with larger datasets. However, these

SBI approaches require the use of potentially expensive calibration checks in

order to be reasonably certain of their correctness, due to the lack of intrinsic

diagnostics available. MCMC approaches could therefore still be favourable

under certain circumstances.

4.2 Model

For demonstration purposes we will make use of an extremely simplified model

without units attached to the parameters. We will assume we have some photon-

emitting source we wish to characterise which generates photons via a marked

Poisson process, where the energy of each photon is drawn from a power-law

or Pareto Type 1 distribution. We observe this source with a single CCD cell or

pixel, for which the total photon energy absorbed is read out at every timestep

t with unit length. The main parameters of the model are α, which controls the

shape of the Pareto distribution, and λ, which denotes the rate of the Poisson

process. We set priors on their values,

α ∼ LogNormal(1, 0.25), (4.1)

λ ∼ Gamma(2, 2). (4.2)

Our observed data is then generated by drawing a count Nt from a Poisson

distribution with rate λ for each timestep t, then drawing Nt values from

the Pareto distribution parametrised by α and a minimum energy emin. The

observed energy Et is then drawn by sampling from a Gaussian with mean

equal to the sum of drawn energies eit within each timestep t and standard

deviation σ,

Nt ∼ Poisson(λ) (4.3)

eit ∼ Pareto(α, emin) (4.4)

Et ∼ N (
Nt∑
i=1

eit, σ) (4.5)

Chapter 4. Inference for Pileup Processes 55

We will assume that both emin and σ are known, but this is not a strict re-

quirement and the inference approaches we will describe here can be easily

generalised to the case where they also need to be inferred. A compound Pois-

son distribution with a Pareto component is not one of the forms for which a

closed-form expression for the probability density function exists, so we will

need to use approximate inference methods to do inference with this model. 1.

4.3 Posterior

The parameters we are primarily interested in are α and λ. Unfortunately, the

nuisance parameters Nt and eit are also latent, so we will also need to infer

them as well. To simplify the notation, we will consider the posterior only for a

single observation E, allowing us drop the indexing over T observations.

p(α, λ,N, {ei}Ni=1 | E) ∝ N (E |
N∑
i=1

ei, σ)
N∏
i=1

p(ei | α, emin)p(N | λ)p(α)p(λ)

(4.6)

If we have multiple observations, the posterior will factorise easily as the values

of eit are independent given α and λ. This posterior is problematic when doing

inference for several reasons:

1. The support can potentially have a very high dimensionality, proportional

to the number of observations T . Many Bayesian inference methods do

not scale well to such high-dimensional posteriors.

2. The support includes discrete parameters.

3. The exact dimensionality of the support changes depending on the value

of the unknown variables Nt.

4.4 Prior Choice

Before discussing how we can do inference using this posterior, we need to

discuss our choice of priors over α and λ given in Equations 4.4 and 4.5. Careful

prior choice is necessary to avoid unreasonable posteriors which can cause

1In fact, there is no easily tractable expression for the sum of Pareto random variables even
when the number of terms in the sum is known (Nadarajah, Zhang, and Pogány 2018)

Chapter 4. Inference for Pileup Processes 56

issues for inference (Gelman, Simpson, and Betancourt 2017). For this simple

demonstration model, we will assume both α and λ are somewhere on the order

of 1. Uniform priors are often not a good idea unless we have very good reason

to believe that the system we are modelling imposes hard constraints on the

parameter values, which is not the case here. Even using a reparametrisation

to remove the constraints, a uniform prior can induce unreasonable posterior

behaviour, causing problems for many sampling methods (Gelman and Yao

2021).

Given our assumptions about the parameter scales and a bias against

uniform priors, it might therefore seem reasonable to use something like a

HalfNormal(0, 1) prior to constrain the order of magnitude of the parameters.

To validate our choice of prior, we should then run a prior predictive check by

simulating data using draws from the prior. The top row of Figure 4.2 shows a

boxplot of sampled energy values of ei when using such a prior on α. Whilst

the interquartile range covers a single order of magnitude, the 99% range spans

about 23 orders of magnitude (wider than all of the named parts of the electro-

magnetic spectrum!), and the typical maximum value of the observed energy

was around 1037.

Clearly, what initially seems to be a reasonably weakly informative prior

is in fact not quite so reasonable when we run a prior predictive check. This

unreasonable behaviour happens because the Pareto distribution becomes ex-

tremely pathological when the value of α approaches zero. To prevent this

from happening, we need to use a boundary-avoiding prior to keep the value

of α away from zero, hence the LogNormal(1.0, 0.25) prior. The bottom row of

Figure 4.2 shows a boxplot when we rerun our predictive check with this prior.

The values of ei are now much more reasonable.

The prior on λ is not quite so critical for avoiding extreme behaviour. We

assume that we will observe some photons even if zero counts are possible,

so we wish to keep the value of λ away from zero, hence the Gamma(2, 2)

distribution. One further interesting aspect of the Pareto distribution is that it

has an indefinite mean for α ≤ 1, and indefinite variance for α ≤ 2. Whilst this

does not necessarily cause problems for inference, if we were to believe that the

value of α was not likely to cover these limits, a prior keeping the value away

from them might be a reasonable choice.

Chapter 4. Inference for Pileup Processes 57

10
1

10
4

10
7

10
10

10
13

10
16

10
19

10
22

ei

ei with HalfNormal(0, 1)

10
1

10
0

10
1

ei

ei with LogNormal(1.0, 0.25)

Figure 4.2: Boxplot of sample values of ei with different priors on α. The box

shows the median and interquartile range, and the whiskers show the 0.5% and

99.5% quantiles. Note the different scales between rows.

4.5 Markov Chain Monte Carlo

A standard method for estimating expectations under the posterior is to use

Markov chain Monte Carlo (MCMC) methods to draw samples from the poste-

rior, and to use the samples to compute Monte Carlo estimates of expectations

of interest. On their own, each of the problematic aspects of our posterior

can be dealt with using an appropriate MCMC scheme. Standard Metropolis-

Hastings and Gibbs samplers can work with discrete variables. Reversible Jump

MCMC permits inference with posteriors of varying dimensionality (Green

1995). General MCMC methods exist that can scale to some high dimensional

posteriors.

However, none of the above solutions can work with all three problematic

aspects combined. General discrete samplers do not scale well to high dimen-

sions, and neither does Reversible Jump MCMC. Samplers that can work with

high-dimensional posteriors require the parameter size to be fixed and the

parameters to be continuous in order to take gradients with respect to the po-

Chapter 4. Inference for Pileup Processes 58

tential. Here we present a solution that allows us to overcome these combined

issues and use MCMC methods with this posterior.

4.5.1 Marginalisation

The issues of the posterior containing both discrete parameters and variable

numbers of parameters can both be solved by marginalising out NT directly.

To understand how this process works, it is helpful to consider a different but

equivalent representation of the generative model outlined in Section 4.2. We

will again consider only a single observation to clarify the notation by dropping

the index t. The generative process still starts by drawing values of α and λ

from the prior,

α ∼ LogNormal(1, 0.25), (4.7)

λ ∼ Gamma(2, 2). (4.8)

However, rather than proceeding to then sample a value of N , we first

sample sets {eMm }
M

m=1 with values of M corresponding to all possible values of

N ,

eMm ∼ Pareto(α, emin) for m in [1, . . . ,M], M in [0, . . . ,∞]. (4.9)

We then sample a value of N , and use it to select the set {eMm }
M

m=1 where M = N

to produce the observed energy E. This generative process produces identical

results to the previous process, but has a different posterior as we now need to

consider all of the possible sets of {eMm }
M

m=1.

p(α, λ,N,
{
{eMm }

M

m=1

}∞

M=0
| E) ∝

N (E |
N∑
i=1

eNi , σ)
∞∏

M=0

M∏
m=1

[
p(eMm | α, emin)

]
p(N | λ)p(α)p(λ) (4.10)

The value of N can then be marginalised out of the posterior by summing

Chapter 4. Inference for Pileup Processes 59

over it,

p(α, λ,
{
{eMm }

M

m=1

}∞

M=0
| E) =

∞∑
N=0

p(α, λ,N,
{
{eMm }

M

m=1

}∞

M=0
| E) (4.11)

∝
∞∑

N=0

N (E |
N∑
i=1

eNi , σ)
∞∏

M=0

M∏
m=1

[
p(eMm | α, emin)

]
p(N | λ)p(α)p(λ) (4.12)

∝ p(α)p(λ)
∞∏

M=0

M∏
m=1

[
p(eMm | α, emin)

] ∞∑
N=0

[
N (E |

N∑
i=1

eNi , σ)p(N | λ)

]
(4.13)

This result could have been arrived at by directly marginalising the posterior

presented in Equation 4.6, but this presentation makes it easier to see how the

values eMm are actually independent of N and can therefore be taken outside

of the summation. If we extend the posterior to multiple observations, the

marginalisation is still easy to calculate as the posterior still factorises, avoiding

an exponential T term in the complexity of the computation.

In practice, because the prior limits the plausible values of N , we can trun-

cate the infinite summation and product at a cut-off Nmax = Mmax. In doing

this marginalisation, we have removed the discrete parameters and fixed the

dimensionality of the support.

4.5.2 Hamiltonian Monte Carlo

Having solved the issue of discrete variables and a varying dimensionality

support, we still have the issue of the high dimensionality of the posterior.

The dimensionality D is proportional to TN2
max. Even with only T = 100

observations and truncating the marginalisation at Nmax = 10, our posterior

will have dimensionality D = 552.

Fortunately, as the marginalisation has removed the discrete variables, we

can take advantage of the ability to differentiate the unnormalised log-density

function with respect to the parameters and make use of Hamiltonian Monte

Carlo (HMC), an MCMC method which can scale to very high-dimensional

posteriors (Duane et al. 1987; Neal 2011). Section 2.2 provides a brief review of

HMC. HMC is very sensitive to the choice of several tuning parameters, so in

practice an adaptive variant is almost always used (Hoffman and Gelman 2014;

Betancourt 2018; Stan Development Team 2022).

Chapter 4. Inference for Pileup Processes 60

4.5.3 Reparametrisation

HMC is sensitive to constraints on the values of the parameters. It is there-

fore standard practice to reparameterise the posterior so that the support of

each sampled variable is unconstrained. For example, as both α and λ are con-

strained to be positive, we instead sample logα and log λ directly, which have

unconstrained support. As the density is still evaluated on α and λ, we need to

perform a change-of-variables adjustment using the log-Jacobian-determinant

when computing the potential function. Here we consider some additional

reparametrisations which could improve the performance of our HMC sampler.

4.5.3.1 Rescaling Transformation

Under the prior, there will be a strong correlation between the values of α and

eMmt. If the likelihood is not sufficiently informative, then this will also lead to

strong correlations in the posterior. Whilst adaptive HMC can work even in the

presence of strong correlations between parameters, it will still work better if

those correlations can be removed via an appropriate reparametrisation (Stan

Development Team 2022).

Fortunately, such a reparametrisation exists for the Pareto distribution.

Rather than sampling eit directly from the Pareto distribution, it can be sampled

as follows,

zMmt ∼ Exponential(1), (4.14)

eMmt = exp(
zMmt

α
) · emin. (4.15)

This reparametrisation works as whenever a new value of α is proposed, the val-

ues of eMmt will be automatically consistent with it, making it easier for the chain

to mix well. As we are only evaluating the density on zMmt, we do not need to

make a change-of-variables adjustment. We will refer to this reparametrisation

as the rescaling parametrisation.

4.5.3.2 Fractions Transformation

For a given value of t and M the corresponding latent energies eMmt will be

highly correlated with each other, as they must add up to some value close to

the observed energy Et. In the limit of zero noise, they will be hard-constrained

Chapter 4. Inference for Pileup Processes 61

to lie on a hyperplane and the final energy can be completely determined by

the previous M − 1 energies. With non-zero noise, they will be soft-constrained

to lie close to a hyperplane. If we can eliminate this soft-constraint, HMC might

be able to propose more independent samples and mix more easily.

One possible method that would allow this soft-constraint removal is to

reparameterise it in terms of a latent total energy Êt and fractions fM
it that

describe the proportion of the total energy to be allocated to each latent photon

energy,

eMmt = Êt · fM
mt, (4.16)

eMmt ∼ Pareto(α, emin), (4.17)

Et ∼ N (Êt, σ). (4.18)

The fractions fM
mt can be themselves be parametrised from a unconstrained space

of M-1 variables using a stick-breaking transformation (Stan Development Team

2022). We take {uM
mt}

M−1

m=1 unconstrained variables, map them into the range

[0, 1] with a sigmoid transformation, then use each mapped variable in turn to

describe the remainder of a stick to be broken off to form fM
mt, with the stick

starting at unit length. The final fraction is whatever is left over from the unit

stick.

As the Pareto distribution has a minimum cut-off emin, there is an additional

constraint that the latent total energy must be no less than M · emin for each

case of M in the marginalisation. Thus we will need a latent energy ÊM
t for

each count in order to be entirely unconstrained, rather than sharing one value

of Êt over all counts. As we evaluate the density on eMmt rather than fM
mt, we

will need to make a change-of-variables adjustment. We will refer to this

reparametrisation as the fractions parametrisation.

4.5.4 Experiments

4.5.4.1 Parameter Recovery

As an initial check that our MCMC approach is feasible, we attempt to recover

the parameters used to generate some synthetic data. We also use these experi-

ments to compare the efficiency of the different possible reparametrisations we

have identified. We set the values of α and λ as shown in Table 4.1 then created

a synthetic dataset with T = 100 observations using our generative model and

Chapter 4. Inference for Pileup Processes 62

Parameter Value

α 2.5

λ 1.0

σ 0.01

emin 0.2

Table 4.1: Parameter values used for the parameter recovery experiments.

Table 4.2: Estimates of the parameters α and λ for each MCMC parametrisation,

along with diagnostic statistics.

Mean SD HDPI-L HDPI-U NESS R̂

Parameter

Standard α 2.334 0.273 1.853 2.853 298.0 1.02

λ 1.114 0.122 0.884 1.339 1378.0 1.00

Rescaled α 2.343 0.277 1.836 2.860 713.0 1.00

λ 1.111 0.121 0.881 1.335 1854.0 1.00

Fractions α 2.345 0.272 1.854 2.861 337.0 1.01

λ 1.103 0.119 0.871 1.319 1378.0 1.01

a fixed random seed. Our MCMC experiments were written with JAX using

NumPyro’s implementation of adaptive HMC (Bradbury et al. 2018; Bingham

et al. 2019; Phan, Pradhan, and Jankowiak 2019). For each parametrisation, we

ran 4 independent chains for 5000 steps each, with 5000 warm-up steps.

Table 4.2 summarises the posterior mean, standard deviation and 94% high-

est density posterior interval (HDPI) for both α and λ across each parametrisa-

tion, as well as the effective sample size (NESS) and the potential scale reduction

factor (R̂) (Vehtari, Gelman, Simpson, et al. 2021). We can see that the estimates

of the parameter values are more or less identical down to the second or third

decimal place. Figure 4.3 provides an alternative visualisation of the param-

eter estimates, clearly indicating that they are self-consistent and reasonably

consistent across parametrisations. Figures 4.4, 4.5 and 4.6 show corner plots

of the samples of α and λ for each parametrisation. Consistent with the results

from the table, the posteriors look to be identically shaped, and contain the true

parameters used to generate the data.

Chapter 4. Inference for Pileup Processes 63

1.0 1.5 2.0 2.5 3.0

Standard
Rescaled
Fractions

Figure 4.3: Forest plot showing the 94% HDPI, interquartile range and median

for all MCMC chains using each parametrisation.

Where the parametrisations differ is in the values of the diagnostic statistics.

The value of NESS for α and the rescaled parametrisation is more than twice

that of the other parametrisations. This shows that the chains with the rescaled

parametrisation have better mixing with more independent samples.

The R̂ value shows how consistent the estimates of the parameters are both

within the chains and across them. A value close to 1.0 for all parameters

indicates that the chains have converged. The values in the table indicate that

we can be much more certain that the rescaled parametrisation has converged

compared to the other parametrisations. Whilst not presented in the table, R̂

values were also computed for the remaining parameters as well as α and λ.

For the rescaled parametrisation, no parameters had R̂ greater than 1.01, whilst

the standard parametrisation had 4 parameters greater than 1.01. The fractions

parametrisation had 9 parameters with R̂ over 1.01, with a value of 1.29 for one

parameter, suggesting that the chains have failed to converge properly.

There are also useful diagnostics to consider which are specific to HMC. If

the posterior contains pathological regions of high curvature, the numerical

integrator used to simulate the Hamiltonian trajectory will show increasing

Chapter 4. Inference for Pileup Processes 64

error if the integrator step-size is not sufficiently small, referred to as “diver-

gences” (Betancourt 2018). No divergences were found in any of the chains for

all of the parametrisations. None of the chains exceeded the maximum number

of allowable steps when simulating each Hamiltonian trajectory, another good

indication that the chains are mixing well.

The Bayesian fraction of missing information (BFMI) is a diagnostic value

which indicates whether the warmup procedure has done a good job of tuning

the mass matrix needed to compute the momentum in the Hamiltonian (Betan-

court 2016a). Failing to tune this properly can result in chains which struggle to

reach the tails of the posterior. All four chains for the standard parametrisation

are below the empirically recommended threshold of 0.3, whilst two out of

four chains are below the threshold for the fractions parametrisation and the

remaining two are only marginally above it. In contrast, every chain for the

rescaled parametrisation is well above the threshold. In general, these results

suggest that parameter estimates using the rescaled parametrisation are the

most trustworthy, as the chains are able to mix well more easily, explore the

tails of the posterior, and converge to the same estimates.

Chapter 4. Inference for Pileup Processes 65

1.5 2.0 2.5 3.0 3.5
0.8
1.0
1.2
1.4
1.6

0.8 1.0 1.2 1.4 1.6

Figure 4.4: Corner plot with 1D marginals and a 2D joint plot of MCMC posterior

samples of α and λ using the standard parametrisation. The blue lines indicate

the ground-truth parameter values. The posterior contains the ground-truth

values.

1.5 2.0 2.5 3.0 3.5
0.8
1.0
1.2
1.4
1.6

0.8 1.0 1.2 1.4 1.6

Figure 4.5: Corner plot of MCMC posterior samples using the rescaled

parametrisation with the same format as Figure 4.4.

Chapter 4. Inference for Pileup Processes 66

1.5 2.0 2.5 3.0 3.5
0.8
1.0
1.2
1.4
1.6

0.8 1.0 1.2 1.4 1.6

Figure 4.6: Corner plot of MCMC posterior samples using the fractions

parametrisation with the same format as Figure 4.4.

Chapter 4. Inference for Pileup Processes 67

4.5.4.2 Simulation-Based Calibration

The fact that our MCMC procedure can recover some example parameters is

not sufficient evidence to indicate that it works properly. The approximate

posterior could be too narrow or too broad compared to the true posterior, or

biased in one particular direction, whilst still containing the true parameters.

The R̂ diagnostics indicate that the independent chains have converged to the

same distribution, not that they have converged to the correct distribution.

Simulation-based calibration (SBC) is a method which can help diagnose

a procedure which is producing incorrect posterior samples (Talts et al. 2020).

The key idea of SBC is that if we have a prior p(θ) and a likelihood p(y | θ) that

we can simulate from, we can generate simulated data ŷ using samples θ̂ from

the prior. If we then use our procedure under investigation to generate samples

from the posterior p(θ | ŷ) for each set of simulated data, the posterior averaged

over the data should be equal to the prior,

p(θ) =

∫
p(θ | ŷ)p(ŷ | θ̂)p(θ̂)dŷdθ̂. (4.19)

In order to evaluate the equality of the prior and data-averaged posterior, the

rank statistic of each parameter in the prior sample can be computed relevant

to the posterior samples for each simulated dataset. If the posterior is correct,

the distribution of rank statistics should be uniform. This can be tested by

plotting the rank statistics as a histogram. A too-broad posterior will result

in the extreme ranks being under-represented, whilst conversely a too-narrow

posterior will have the extreme ranks over-represented. A biased posterior

will have one side of the extreme ranks over-represented and the other under-

represented.

To evaluate our MCMC implementation using SBC, we simulated 640

datasets of T = 100 observations using draws from the prior. As our pre-

vious experiments indicated that the rescaled parametrisation was the most

reliable, we restricted our experiments to that parametrisation. For each simu-

lated dataset, we ran a single chain for 5000 steps with 5000 warmup steps. The

5000 samples were uniformly thinned to produce 31 independent samples.

Figure 4.7 shows the histogram of ranks obtained for both α and λ. The

ranks have been rebinned by a factor of 2. The horizontal dashed lines indicate

the expected 99% coverage interval assuming uniformly distributed ranks. In

Chapter 4. Inference for Pileup Processes 68

general the histograms look reasonably uniform, suggesting that the posterior

is not too broad or narrow or biased in one direction.

0 10 20 30
Rank

0

10

20

30

40

50

C
ou

nt

0 10 20 30
Rank

Figure 4.7: Histograms of the prior sample ranks with respected to the posterior

samples when running SBC using our MCMC implementation. Dashed lines

indicate the median and 99% interval assuming a uniform distribution of ranks.

Another visual method of checking the rank statistics for a uniform distribu-

tion is to plot the empirical CDF (ECDF) against the 99% expected interval and

the median ECDF assuming uniformity. Figure 4.8 shows the ECDF along with

the expected 99% interval and median on the top row for both α and λ. The

bottom row shows the ECDFs with the expected median subtracted, allowing

us to see the deviations more clearly. We can see that the ECDF stays within

the expected interval, suggesting the ranks are reasonably close to uniformly

distributed and that the posterior is not obviously deficient.

These experiments have shown that MCMC is a potentially viable option

when doing inference using CCD data with an observation model involving

pileup. However, the implementation of this approach was not straightforward.

Unlike the probabilistic programming paradigm where we would just write

down a generative model and have the language compute the posterior and

sample from it automatically, we had to derive an appropriate posterior, then

Chapter 4. Inference for Pileup Processes 69

0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

0 10 20 30

0 10 20 30
Rank

0.04

0.02

0.00

0.02

0.04

E
C

D
F

R
es

id
ua

l

0 10 20 30
Rank

Figure 4.8: The top row shows plots of the Empirical CDF of the SBC prior

sample ranks, along with dashed lines indicting the 99% expected interval

and the median. The bottom row shows the same data but with the median

subtracted from each line, making the differences clearer.

Chapter 4. Inference for Pileup Processes 70

write a corresponding marginalised log-density function by hand. If we were to

use a more realistic pileup model we would need to re-derive a new posterior.

This could be a steep barrier against widespread adoption of this method.

Some work has been done to enable probabilistic programming languages

to assist the user by performing marginalisation of discrete variables auto-

matically, but this is typically still experimental and restricted to bounded

distributions (Bingham et al. 2019; Gorinova et al. 2021). There are also issues

around choosing a truncation value Nmax. If we select too large a value, our

MCMC chains will waste time exploring parameter values that are incredibly

unlikely to have generated the observed data, but if we select a value that is too

small our posterior estimates will be biased.

4.6 Simulation Based Inference

4.6.1 Background

Simulation-based inference (SBI) methods are a family of techniques for doing

Bayesian inference when the likelihood is intractable or otherwise presents

difficulties for standard inference methods. SBI methods only require access to

a prior p(θ), some observed data x̃, and a function which simulates our model

by taking parameters θ as inputs (α and λ in our case), and produces stochastic

outputs x (the energies Et in our case). In doing so we can ignore the nuisance

random variables within the stochastic simulator and only produce posterior

estimates for expectations involving the parameters of interest. We provide a

more in-depth summary of SBI methods in Section 2.5.1

SBI methods work by selecting samples θ (often drawn from the prior),

running the simulator for each sample to produce simulated data x, then us-

ing pairs of {θ,x} to learn the behaviour of the simulator and fit the posterior

p(θ | x). Some newer methods make use of a neural network-based conditional

density estimator such as a mixture density network (Bishop 1994) or normalis-

ing flow (Papamakarios, Nalisnick, et al. 2021) to learn a particular conditional

distribution. After training, we can then use our observed data x̃ as an input to

draw samples from the posterior p(θ|x̃).
A more efficient process for some SBI methods is to proceed over several

rounds. On the first round we use θ samples from the prior for initial simu-

Chapter 4. Inference for Pileup Processes 71

lations as before. On subsequent rounds we use θ samples from the previous

round’s posterior estimate p(θ | x̃) to run simulations, making use of our ob-

served data x̃. In doing so we can concentrate on parameters that were more

likely to have generated our data, and avoid wasting computation time learning

the behaviour of the simulator with parameters that were very unlikely to have

generated our data. These variants of SBI are typical referred to as sequential

methods.

Below we discuss the setups for the three main variants of sequential SBI

methods we will be considering for this problem. Section 2.5 contains a more

comprehensive review of neural SBI methods.

4.6.1.1 Posterior Estimation

Sequential neural posterior estimation (SNPE) uses a neural-network based

conditional density estimator to learn the posterior p(θ | x) directly. For our

experiments we used the SNPE-C variant, using a masked autoregressive flow

(MAF) as the conditional density estimator (Papamakarios, Pavlakou, and

Murray 2017). Sampling from the conditional density estimator can be generally

be done quickly without the need for an MCMC scheme.

4.6.1.2 Likelihood Estimation

Sequential neural likelihood estimation (SNLE) also uses neural network-based

conditional density estimator, but tackles the problem from a different direction,

learning the likelihood p(x | θ) instead (Papamakarios, Sterratt, and Murray

2019). In conjunction with the prior p(θ), we can then use the learned likelihood

with an MCMC scheme to draw samples from the posterior. When published

SNLE originally had the advantage over SNPE-A of being able to use arbitrary

density estimators, but the subsequent improvements to SNPE have removed

this difference. Fitting a conditional density estimator to x can sometimes be

challenging if the data contains atoms of singular density. The density estimator

can easily maximise both the training and validation log-likelihoods by placing

all of the mass on the atoms and ignoring the rest of the data. As with SNPE we

use a MAF as the conditional density estimator for our experiments.

Chapter 4. Inference for Pileup Processes 72

4.6.1.3 Ratio Estimation

Sequential neural ratio estimation (SNRE, Hermans, Begy, and Louppe 2020)

builds on the likelihood-free inference by ratio estimation method (LFIRE,

Thomas et al. 2021). This procedure works by using a neural network to perform

classification to estimate the ratio p(θ,x)
p(x)p(θ)

and to account for some training pairs

being drawn using the estimated posterior from previous iterations instead

of the prior. The advantage of SNRE compared to SNLE or SNPE is that in

general it is much easier to fit a classifier than a conditional density estimator.

However, like SNLE, it only outputs a function proportional to the posterior

up to a constant, so an MCMC scheme is needed to produce samples from the

posterior. For the experiments we use a version of SNRE described by Durkan,

Murray, and Papamakarios (2020), sometimes referred to as SNRE-B.

4.6.2 Summary Statistics

As the data outputs from the simulators we would like to use are often high-

dimensional and reasonably high variance, it is typically necessary to use a set

of summary statistics as inputs for the conditional density estimator or classifier.

Designing an appropriate set of summary statistics can be difficult, balancing

the need to capture all of the relevant information contained in the data against

the need to reduce variance and dimensionality. For this application, as we

assume the observed energies Et are independent and identically distributed

(IID), one possible option would be to summarise them with a normalised

histogram. To do this we need to fix the width and locations of the histogram,

but this causes problems when the data can span different ranges.

Instead of using a histogram, we could alternatively use the quantiles of the

series to summarise it. This is effectively equivalent to using a histogram, but

with the bin heights fixed in advance and the bin widths fitted to the data. The

advantage of this approach is that the summary statistic is now no longer suited

only to a particular scale. This is particular critical for making the calibration

experiments work, as under even an informative prior observed energies can

span several orders of magnitude, as shown in Section 4.4. For our experiments

we used 20 linearly spaced quantiles from 5% to 95% as summary statistics,

fitted to the observed energies from the simulated model on a log-scale.

Chapter 4. Inference for Pileup Processes 73

4.6.3 Experiments

4.6.3.1 Parameter Recovery

To evaluate each SBI method for this task, we repeated the parameter recovery

experiment from Section 4.5.4.1. Following standard practice in the SBI litera-

ture, we run the experiments for each method with a varying number of simu-

lations, using 10 rounds of sequential sampling and fitting for each simulation

budget. We used the SBI Python package to implement each method (Tejero-

Cantero et al. 2020). For the SNPE method, we added a log transformation on

top of the flow to ensure that our posterior approximation matches the support

of the parameters. For SNLE and the SNRE methods, we used adaptive HMC

to perform the MCMC sampling of the parameters (Bingham et al. 2019), using

a reparametrisation to put both α and λ on a log-scale.

We deviate slightly from usual practice in the SBI literature by performing 4

independent runs of each inference procedure, rather than performing a single

run. Each run uses the same dataset but different initial random seeds, a process

analogous to the standard MCMC practice of running multiple independent

chains. The posterior samples are then combined at the end when computing

estimates. This lets us check the convergence of each method using the potential

scale reduction factor R̂ commonly used with MCMC methods. If the R̂ value

is not close to 1 for each parameter, then each run has not converged to produce

samples from the same distribution. Therefore at least one of the runs must

be wrong, and the correctness of any posterior expectations computed using

these samples will be suspect. R̂ values close to 1 for all parameters do not

mean that the method is producing samples from the posterior distribution, just

that each run of the method converged to the same (but not necessarily correct)

distribution.

The results are presented in Table 4.3. For each method, the R̂ values are

far from 1 when using only 103 simulations, indicating that this simulation

budget is too low to correctly identify the posterior regardless of the method.

When using 104 simulations, the R̂ values become more reasonable, although

for SNLE the values are still relatively high. With 105 simulations, R̂ values for

both SNPE and SNRE are less than 1.01, indicating good convergence. How-

ever, for SNLE, values actually get considerably worse with 105 simulations.

Whilst counter-intuitive, this has been observed before with SNLE on other

Chapter 4. Inference for Pileup Processes 74

Table 4.3: Estimates of the parameters α and λ for each SBI method and

simulation budget.

Mean SD HDPI-L HDPI-U R̂

Method Simulations Param

SNPE 103 α 2.254 1.017 1.006 3.293 1.51

λ 0.878 0.794 0.041 1.331 1.59

104 α 2.449 0.912 1.804 3.112 1.01

λ 1.137 0.138 0.892 1.401 1.03

105 α 2.431 0.322 1.863 3.055 1.00

λ 1.138 0.127 0.895 1.371 1.00

SNLE 103 α 2.527 0.377 1.899 3.243 1.19

λ 1.225 0.185 0.864 1.568 1.37

104 α 2.519 0.381 1.831 3.227 1.08

λ 1.090 0.149 0.836 1.385 1.15

105 α 2.129 1.391 0.016 3.886 2.15

λ 0.630 0.393 0.000 1.117 2.47

SNRE 103 α 2.512 0.398 1.795 3.253 1.12

λ 1.186 0.141 0.929 1.453 1.06

104 α 2.555 0.363 1.909 3.245 1.02

λ 1.155 0.131 0.919 1.402 1.00

105 α 2.459 0.336 1.854 3.084 1.00

λ 1.141 0.133 0.901 1.396 1.00

problems (Lueckmann, Boelts, et al. 2021). In this case the problem happens

because the flow used to model the likelihood is overfitting to atoms of density

in the distribution of the summary statistics caused by zero-energy observations.

These atoms are more likely to occur with samples from the prior, so using more

simulations on the first round makes the overfitting more likely to occur.

Figure 4.9 visualises the estimates of each parameter for each run of each

method when using a budget of 104 simulations. This provides a visual confir-

mation that SNLE produces less self-consistent estimates as indicated by the

poor R̂ values. SNPE and SNRE appear to be roughly consistent with each

other, and it is obvious that SNRE is very self-consistent when estimating λ.

Figures 4.10, 4.11 and 4.12 show corners plots of the combined samples from

Chapter 4. Inference for Pileup Processes 75

1.0 1.5 2.0 2.5 3.0 3.5

SNPE
SNLE
SNRE

Figure 4.9: Forest plot showing the 94% HDPI, interquartile range and median

for both parameters and each run of each method using 104 simulations.

all runs when using a budget of 104 simulations. Each posterior appears to be

roughly the same shape, but there are small differences, and the plots are not as

consistent as those for the different MCMC parametrisations.

Chapter 4. Inference for Pileup Processes 76

1.5 2.0 2.5 3.0 3.5
0.8
1.0
1.2
1.4
1.6

0.8 1.0 1.2 1.4 1.6

Figure 4.10: Corner plot with 1D marginals and a 2D joint plot of SNPE samples

of α and λ. The blue lines indicate the ground-truth parameter values.

1.5 2.0 2.5 3.0 3.5
0.8
1.0
1.2
1.4
1.6

0.8 1.0 1.2 1.4 1.6

Figure 4.11: Corner plot of SNLE posterior samples.

Chapter 4. Inference for Pileup Processes 77

1.5 2.0 2.5 3.0 3.5
0.8
1.0
1.2
1.4
1.6

0.8 1.0 1.2 1.4 1.6

Figure 4.12: Corner plot of SNRE samples.

4.6.3.2 Simulation Based Calibration

As with the MCMC parametrisations, we also ran the SBC experiments as a

check on the correctness of each SBI method. We drew 640 samples from the

prior and simulated a dataset for each, before running each SBI method on the

dataset once, drawing 31 samples from the posterior and computing the rank of

the prior sample relative to the posterior samples. For computational reasons

we restricted the SBI runs to a budget of 104 simulations. For SNLE and SNRE

we thinned the samples from a single MCMC chain by a factor of 4 to produce

the final posterior samples. As SNPE produces independent samples directly

no thinning was applied.

Figures 4.13 and 4.14 show the histogram and ECDF plots respectively.

Inspecting the histograms first, we can see that SNPE and SNRE look reasonable

for both parameters, as none of the bin heights appear to be too extreme.

The histogram for SNLE shows that the minimum and maximum ranks for α

are overrepresented, as well as the maximum rank for λ. This suggests that

the posterior that SNLE is fitting is too narrow for α, and biased for λ. The

normalised ECDF plot for SNLE in Figure 4.14 shows this at a more granular

level without rebinning the ranks. Both α and λ are outside the expected 99%

interval at the extreme ranks. This shows that the SNLE’s posterior estimates

Chapter 4. Inference for Pileup Processes 78

for λ are not just biased but also slightly too narrow.

0

20

40

60
C

ou
nt

SNPE

C
ou

nt

SNPE

0

20

40

60

C
ou

nt

SNLE

C
ou

nt

SNLE

0 10 20 30
Rank

0

20

40

60

C
ou

nt

SNRE

0 10 20 30
Rank

C
ou

nt

SNRE

Figure 4.13: Histograms of the prior sample ranks with respect to the posterior

samples for each SBI method and parameter. Dashed lines indicate the median

and 99% interval assuming a uniform distribution of ranks. The extreme ranks

are overrepresented for both parameters with SNLE, indicating a too-narrow

posterior.

Chapter 4. Inference for Pileup Processes 79

0.04

0.02

0.00

0.02

0.04
E

C
D

F
R

es
id

ua
l

SNPE SNPE

0.04

0.02

0.00

0.02

0.04

E
C

D
F

R
es

id
ua

l

SNLE SNLE

0 10 20 30
Rank

0.04

0.02

0.00

0.02

0.04

E
C

D
F

R
es

id
ua

l

SNRE

0 10 20 30
Rank

SNRE

Figure 4.14: Normalised Empirical CDF plot of prior sample ranks for each

SBI method and parameter. Plots follow the same format as the bottom row of

Figure 4.8. The ECDF for SNLE is outside the 99% interval for both parameters

at both rank extremes, indicating a miscalibrated posterior.

Chapter 4. Inference for Pileup Processes 80

4.7 Computational Efficiency

It is difficult to compare the computational cost of the MCMC and SBI ap-

proaches directly, as an evaluation of the likelihood is not the same as running a

simulation, and both approaches are implemented in different numerical frame-

works. In general, the computational cost of the MCMC approach is dominated

by the need to make many evaluations of the likelihood and gradients, whilst

the SBI methods are dominated by the cost of training the neural network and

sampling from the posterior approximation on each round, as the simulation is

relatively quick to run.

We can do a theoretical analysis of the computational complexity of each part.

The time complexity of standard HMC scales as O(D5/4) with dimensionality

D (Neal 2011), and the dimensionality D scales proportional to TN2
max, giving a

total complexity ofO([TN2
max]

5/4
). For the SBI methods, the actual fitting process

complexity will be approximately the same assuming the summary statistic

size, simulation budget, and the number of parameters in the neural networks

remain constant. The only variable cost is the run time of the simulator, which

has time complexity O(TNmax). As already noted, for this setup the simulation

cost is small relatively to the time taken to train the neural networks and draw

samples from them, so we would expect total training time to be approximately

constant with respect to T .

To verify this analysis, we reran the parameter recovery experiments for

different values of T . We used the rescaled parametrisation for the MCMC

approach, and the SNPE and SNRE methods for the SBI approach, as the

previous experimental results indicated these were the most reliable. Table 4.4

reports the mean and standard deviation of each experiment run time across 5

repetitions. It is difficult to make meaningful comparisons in terms of absolute

differences in run times, but Figure 4.15 shows a plot of the times for each

method allowing us to see the relative scaling. This confirms our theoretical

analysis that run time will be approximately constant with respect to T for

the SBI approaches, and will scale proportional to T for the MCMC approach.

For some pileup analyses T can be on the order of 104 (Davis 2001), so the SBI

approaches could have a substantial advantage in terms of run time.

Chapter 4. Inference for Pileup Processes 81

Table 4.4: Mean and standard deviation of experiment run times in minutes for

each method and different numbers of datapoints.

T 20 50 100 200

Method

MCMC 23.44± 5.03 48.07± 9.20 175.31± 4.41 402.34± 65.53

SNPE 14.17± 2.24 14.03± 1.02 14.43± 1.03 15.07± 0.47

SNRE 19.06± 2.66 20.50± 3.30 19.52± 1.32 18.71± 0.54

20 50 100 200
Observations T

0

100

200

300

400

R
un

tim
e

(m
in

)

MCMC
SNRE
SNPE

Figure 4.15: Plot of run times against number of observations for different

methods. Errorbars show ±1 standard deviation.

Chapter 4. Inference for Pileup Processes 82

4.8 Censored Data

In a more realistic setting, a CCD sensor is generally only well-calibrated over

a certain range of photon energies. This is particularly important for power

law distributed energies, where at smaller values of α a substantial number of

observed energies will be beyond the right cut-off of the calibrated range due to

the heavy-tailed nature of the distribution. For the Chandra ACIS sensor, Davis

(2001) considers energy observations beyond 10 keV to be poorly calibrated.

Here we consider modifications to allow both the MCMC and SBI approaches

to work with censored data.

For modelling purposes, we will denote variables associated with censored

observations using the superscript ∗. We will assume that we know the number

of censored observations, denoting it as T ∗, and the cut-off value Ec beyond

which observations are censored.

4.8.1 MCMC

We can theoretically extend the MCMC approach to censored data by treating

the censored observations E∗
t∗ as latent variables to be inferred. Modifying

the posterior presented in Equation 4.6 to include this latent variable, and

again dropping the indexing over T and T ∗ to simplify the notation gives us a

posterior

p(α, λ,N, {ei}Ni=1, N
∗, {e∗j}

N∗

j=1
, E∗ | E) ∝

N (E |
N∑
i=1

ei, σ)
N∏
i=1

p(ei | α, emin)p(N | λ)

×N (E∗ |
N∗∑
j=1

ej, σ)
N∗∏
j=1

p(ej | α, emin)p(N
∗ | λ)

× p(α)p(λ). (4.20)

We can apply the same marginalisation process as before to make this

posterior useable with HMC, with the addition of E∗ as another latent variable.

An appropriate reparametrisation enables us to constrain E∗ > Ec.

In practice when implemented this approach does not actually work. The

censored energy E∗ is highly correlated with the latent sum of individual

energies
∑N∗

j=1 ej . Worse still, when applying the marginalisation approach the

Chapter 4. Inference for Pileup Processes 83

marginalised sets of individual energies {eM∗
m }

M∗

m=1 are now highly correlated

through E∗ between the sets corresponding to different values of M∗ as well

as within sets. These strong correlations result in a posterior with regions of

extremely high curvature, which the numerical integrator used to simulate the

Hamiltonian trajectory within HMC struggles to deal with, resulting in a large

number of divergences and poorly mixing chains.

We can improve on this approach by noting that we do not actually care

about the value of E∗. Instead, we can condition on the posterior on E∗ > 10.

Denoting the cumulative distribution function (CDF)

Fx(X | µ, σ) = p(x ≤ X), x ∼ N (µ, σ), (4.21)

and the complementary cumulative distribution function (CCDF) as

F̄x(X | µ, σ) = 1− Fx(X | µ, σ), (4.22)

the posterior becomes

p(α, λ,N, {ei}Ni=1, N
∗, {e∗j}

N∗

j=1
| E,E∗ > Ec) ∝

N (E |
N∑
i=1

ei, σ)
N∏
i=1

p(ei | α, emin)p(N | λ)

× F̄E∗(Ec |
N∗∑
j=1

ej, σ)
N∗∏
j=1

p(ej | α, emin)p(N
∗ | λ)

× p(α)p(λ). (4.23)

We can apply the same marginalisation approach as before to eliminate N

and N∗.

To validate the approach, we repeated the parameter recovery experiment

from Section 4.5.4.1. We use the same parameters as before, except for the

value of α which we change to 0.38 to match the power law index Davis 2001

inferred for the spectrum of the Quasar S5 0836+7104 (Fang et al. 2001). We also

changed the prior p(α) to a Gamma(3, 3) distribution to allow the value of α

to be closer to zero. We set the cut-off for censoring simulated observations at

10 keV. In order to have the chains mix well, we found we needed to use the

rescaled parametrisation for the fully observed measurements and the standard

parametrisation for the censored observations.

Table 4.5 summarises the parameter estimates along with diagnostic statis-

tics. Figure 4.16 shows a corner plots of the samples of α and λ. We can see that

Chapter 4. Inference for Pileup Processes 84

Table 4.5: Estimates of the parameters α and λ when using MCMC with

censoring.

Mean SD 3% HDI 97% HDI NESS R̂

α 0.351 0.049 0.260 0.442 271.0 1.01

λ 1.145 0.143 0.876 1.411 1655.0 1.00

this approach allows us to correctly recover the parameters. We find that the

R̂ values are reasonably close to one for all parameters, and our chains do not

have any divergent samples. However, the BFMI values are below 0.3 for all

chains, indicating that they are struggling to explore the tails of the distribution.

This is a known problem with HMC for heavy-tailed distributions (Betancourt

2018), which the Pareto distribution is for small values of α.

The inability to reach the tails of the posterior distribution is exacerbated by

the need to select a very small step size for the numerical integrator, required

in order to adequately explore the sharp transition in the posterior induced by

the CCDF when the sums of photon energies are around the cut-off value of

Ec. Consequently, the Hamiltonian trajectory must be simulated for many steps

in order to be able to reach the tails, and in practice we found it would always

use the maximum number of steps permitted. Each sample from the censored

posterior used 215 − 1 steps, whilst samples from the non-censored posterior

from the experiments in Section 4.5.4.1 required no more than 211− 1 steps even

when the maximum was set to 215 − 1, resulting in a runtime approximately 16

times longer for the censored experiments.

4.8.2 SBI

Modelling the censoring process with the SBI methods is relatively straightfor-

ward. After running the simulator, we remove any simulated observations that

exceed the cut-off before computing the quantiles, then report the fraction of

censored observations as part of the summary statistics. Again we repeated

the parameter recovery experiments with the same setup as for MCMC, but for

this round we only used the SNPE and SNRE methods as the previous results

indicate SNLE is less reliable on this type of problem. For both methods we

used 105 simulations.

Chapter 4. Inference for Pileup Processes 85

0.1
5

0.3
0

0.4
5

0.6
0

0.6
0.9
1.2
1.5
1.8

0.6 0.9 1.2 1.5 1.8

Figure 4.16: Corner plot of MCMC posterior samples accounting for censoring

Table 4.6 summarises the parameter estimates for both methods along with

diagnostic statistics. Figures 4.17 and 4.18 show corner plots of the posterior

samples from each method. We can see that both methods have managed to

recover the ground truth parameters, although the credible intervals for the

estimates produced by SNPE are wider, especially for λ. The R̂ values for

SNPE are away from 1, indicating that each run has not converged to the same

estimates.

4.8.3 Comparison

Figure 4.19 visualises the estimates of each parameter for the MCMC approach

and both SBI methods across each run when using censored data. We can see

that the estimates produced by SNPE are neither self-consistent nor comparable

to the other methods. By contrast, the estimates for SNRE and MCMC are

consistent with each other as well as with themselves. This suggests that SNRE

and MCMC produce more reliable estimates than SNPE. Comparing SNRE

and MCMC, the SNRE approach has the advantage of being straightforward to

implement, as well as having no appreciable difference in run time. The MCMC

Chapter 4. Inference for Pileup Processes 86

Mean SD 3% HDI 97% HDI R̂

Method Parameter

SNPE α 0.358 0.075 0.223 0.501 1.05

λ 1.023 0.256 0.561 1.485 1.06

SNRE α 0.346 0.050 0.255 0.439 1.01

λ 1.134 0.143 0.876 1.405 1.00

Table 4.6: Estimates of the parameters α and λ when using SBI methods on

censored data.

0.1
5

0.3
0

0.4
5

0.6
0

0.6
0.9
1.2
1.5
1.8

0.6 0.9 1.2 1.5 1.8

Figure 4.17: Corner plot of SNPE posterior samples using censored data.

Chapter 4. Inference for Pileup Processes 87

0.1
5

0.3
0

0.4
5

0.6
0

0.6
0.9
1.2
1.5
1.8

0.6 0.9 1.2 1.5 1.8

Figure 4.18: Corner plot of SNRE posterior samples using censored data.

approach required us to carefully modify the posterior over all variables to

account for the censoring process, and took approximately 16 times longer to

run compared to the previous experiments as a consequence of the change in

posterior geometry at smaller values of α.

4.9 Line Spectrum

To show that our SBI approaches can handle more complicated and realistic

models, we consider the case where our energy spectrum has a line emission

component mixed in with the power law spectrum. We model the line spectrum

as a narrow Gaussian, and put appropriate priors on the mean m and scale s.

m ∼ N (4, 1) (4.24)

s ∼ HalfNormal(0, 0.1) (4.25)

We then model the individual photon energy distribution as a mixture of

the line spectrum component and the Pareto component, with a fraction of the

Chapter 4. Inference for Pileup Processes 88

0.25 0.50 0.75 1.00 1.25 1.50 1.75

SNPE
SNRE
MCMC

Figure 4.19: Forest plot of posterior estimates with censored data showing the

94% HDPI, interquartile range and median for each method across each run.

The SNPE results are clearly less consistent.

photons drawn from the line component and the remainder from the power-law

distribution. We put an appropriate prior on the mixing fraction w,

w ∼ Beta(5, 20). (4.26)

The individual photon energies are then drawn from the mixture distribu-

tion,

lit ∼ Bernoulli(w), (4.27)

eit ∼

Pareto(α, emin) lit = 0

N (m, s) lit = 1
. (4.28)

The remainder of the generative model including the pileup and censoring

process is the same as before.

We repeated the parameter recovery experiments using this model. Table 4.7

shows the settings of the parameters we used to generate the synthetic data.

Figure 4.20 shows the distribution of photon energies with and without pileup

when using these parameter settings. The effect of pileup is clearly visible,

resulting in a shifted power law and a clearly visible phantom peak at 6 keV.

Chapter 4. Inference for Pileup Processes 89

Table 4.7: Parameter values used for the parameter recovery experiments with

the line spectrum model.

Parameter Value

α 0.38

λ 2.0 photon s−1

m 3.0 keV

s 0.1 keV

w 0.2

σ 0.01 keV

emin 0.2 keV

Censoring was done with the same 10 keV cut-off as before. We increased the

dataset size to T = 1000 to allow for better identification of the parameters. At

this dataset size in conjunction with the censoring process, using the MCMC

approach would result in impractical runtimes, so we restrict our experiments

to the SNPE and SNRE methods. We used a budget of 105 simulations for each

run, using 4 runs for each method with different random seeds.

Table 4.8 shows the parameter estimates for both methods. Figures 4.21

and 4.22 show corner plots of the posterior samples along with ground truths.

As with the censored data experiments, both methods seem to have recovered

the parameters. However, the credible intervals are generally much wider for

SNPE compared to SNRE. As the R̂ values are far from 1.00 for the SNPE

method we believe that this is the method with the incorrect estimates. Looking

at the samples of s in Figure 4.21 we can also see that the posterior produced

with SNPE has not substantially shrank from the prior distribution given in

Equation 4.25.

Figure 4.23 shows visual comparisons of the parameter estimates across

each run with a forest plot. We can see that the SNPE estimates are much less

self-consistent, and often one of the runs has markedly different estimates from

the rest. Together with the examples from the previous experiments, these

results suggest that SNRE is much better suited to these sorts of problems than

the other SBI methods.

Chapter 4. Inference for Pileup Processes 90

0.0

0.5

1.0

1.5

p(
e)

Unpiled Spectrum

0 2 4 6 8 10
Energy e (keV)

0.0

0.5

1.0

1.5

p(
e)

Piled Spectrum

Figure 4.20: Histograms showing the distribution of photon energies with and

without the presence of pileup when using the parameters in Table 4.7.

Table 4.8: Estimates of the parameters when using SBI with the line spectrum

model.

Mean SD 3% HDI 97% HDI R̂

Method Parameter

SNPE α 0.385 0.052 0.287 0.480 1.14

λ 1.967 0.247 1.559 2.460 1.30

m 3.363 0.358 2.642 4.043 1.12

s 0.071 0.060 0.000 0.179 1.02

w 0.199 0.066 0.083 0.321 1.13

SNRE α 0.365 0.019 0.327 0.400 1.01

λ 1.937 0.075 1.795 2.079 1.01

m 2.984 0.031 2.928 3.043 1.02

s 0.112 0.030 0.059 0.173 1.02

w 0.200 0.021 0.161 0.239 1.01

Chapter 4. Inference for Pileup Processes 91

1.5
01.7
52.0
02.2
52.5
0

2.5
3.0
3.5
4.0
4.5

m

0.0
6

0.1
2

0.1
8

0.2
4

s

0.3
0

0.3
6

0.4
2

0.4
80.0

8
0.1

6
0.2

4
0.3

2

w

1.5
0

1.7
5

2.0
0

2.2
5

2.5
0 2.5 3.0 3.5 4.0 4.5

m
0.0

6
0.1

2
0.1

8
0.2

4
s

0.0
8

0.1
6

0.2
4

0.3
2

w

Figure 4.21: Corner plot of SNPE posterior samples with the line spectrum

mixture model.

Chapter 4. Inference for Pileup Processes 92

1.8
1.9
2.0
2.1

2.9
2

2.9
6

3.0
0

3.0
4

m

0.0
4

0.0
8

0.1
2

0.1
6

0.2
0

s

0.3
25

0.3
50

0.3
75

0.4
000.1

50
0.1

75
0.2

00
0.2

25
0.2

50

w

1.8 1.9 2.0 2.1 2.9
2

2.9
6

3.0
0

3.0
4

m
0.0

4
0.0

8
0.1

2
0.1

6
0.2

0
s 0.1

50
0.1

75
0.2

00
0.2

25
0.2

50
w

Figure 4.22: Corner plot of SNRE posterior samples with the line spectrum

mixture model. Note the different scales from Figure 4.21.

Chapter 4. Inference for Pileup Processes 93

0 1 2 3 4

w

s

m

SNPE
SNRE

Figure 4.23: Forest plot of posterior estimates for the parameters of the model

with a line spectrum component. The lines show the 94% HDPI, interquartile

range and median. Again the SNPE method is clearly less consistent.

Chapter 4. Inference for Pileup Processes 94

4.10 Discussion

4.10.1 Accuracy

Considering the first set of experiments with the simplified model, Tables 4.2

and 4.3 differ slightly in their estimates of α and λ, yet the SBC results indicated

that the MCMC, SNPE and SNRE methods were well-calibrated. How can we

resolve this apparent contradiction? Figure 4.24 shows a combined Forest plot

for each run of each method. We can see that the MCMC estimates for each chain

are slightly more consistent with each other compared to the SBI methods. One

possible explanation is that the SNPE and SNRE posterior estimates in each SBC

run are skewed compared to the correct posterior, but not systematically in one

direction over multiple runs. We would expect this given that each SBC run sees

a different finite set of simulated data over successive rounds. The SBC method

is slightly flawed as it cannot detect this failure using the rank histograms or

ECDF plots. Samples which are skewed in on direction and result in an over-

representation of one of the extreme ranks will be cancelled out by samples

skewed in the other direction which results in an under-representation of that

rank. This contradiction could be resolved at the cost of more computation

time by rerunning the SBC simulations for each prior sample with a simulation

budget of 105 samples instead of 104, as the R̂ values from Table 4.3 indicated

the more expensive runs were more self-consistent.

The SNLE method did not do well on the first set of experiments, as a result

of overfitting to atoms in the summary statistics. In certain situations having a

fast emulator of the simulator would be useful beyond the inference process, so

we should try to avoid writing it off entirely. A possible solution to this issue

is to modify the density estimator, using a hurdle-type model with the flow

restricted to modelling non-zero values (Cragg 1971).

A more general question is whether it actually matters that the posterior

estimates are completely correct? The answer will obviously depend on the

application we are producing estimates for. For an application like estimating

the shape parameter of a power-spectrum for a star, it will not matter too much

if the credible interval is slightly off. At the other extreme, if we were estimating

the basic reproduction number R0 for an SIR model being used to inform public

health policy, it would be a good to be confident that the behaviour of the

Chapter 4. Inference for Pileup Processes 95

1.0 1.5 2.0 2.5 3.0 3.5

SNPE
SNLE
SNRE
MCMC

Figure 4.24: Forest plot comparing the posterior estimates of α and λ for each

run/chain of each method using the first model. The lines show the 94% HDPI,

interquartile range and median. The MCMC chains are generally more self-

consistent that the SBI runs.

posterior tails was correct. It has been observed that many SBI methods have

a tendency to produce overconfident posterior estimates for certain problems,

which is arguably the worst possible failure mode if we are interested in a

Popperian philosophy of empirical falsification (Hermans, Delaunoy, et al.

2021). Having correct posterior estimates can also help with resolving between

limitations caused by a misspecified model, and the inability of the inference

method to correctly estimate the model parameters.

4.10.2 Flexibility

The models presented here are extremely simplified versions of CCD and source

behaviour for demonstration purposes. A natural question therefore is how

well can each approach handle more realistic models? Typical CCDs have

multiple pixels arranged in either a 1D strip or 2D grid. Photons from a point

source will be distributed across multiple adjacent pixels, with the degree of

Chapter 4. Inference for Pileup Processes 96

spread characterised by the point spread function (PSF). We may also have a

more complicated underlying model, where the source has transient or periodic

behaviour.

For the MCMC approach, every change to the model requires a correspond-

ing change to compute the likelihood, with careful consideration needed as to

how each change will affect the inference process. In general, as long as the

total observed energies for each pixel and timestep remain independent given

the other parameters, then the outlined marginalisation approach will still be

feasible. With multiple pixels, an effective rate can be calculated for each pixel

as a product of the source rate λ and the total mass of the PSF covering that

pixel. Similarly, a periodic signal where the source rate is only a function of

time t does not break the independence between observed total energies given

the other parameters, and so the marginalisation approach holds. If the inde-

pendence is broken, for example if the photon arrivals follow an autoregressive

process, then the marginalisation will no longer be a simple 1D summation, and

may be computationally infeasible.

For the SBI approaches, as long as we can simulate a model we can generally

run the inference process without having to alter it as we treat the simulator as a

black box. This makes the SBI approaches more flexible in general, but different

models will likely require different summary statistics. The modification of

the original model to account for censoring is an example of this. As another

example, if we change a model to include periodic behaviour, then our summary

statistics will need to include time information.

However, just because the method runs there is no guarantee that the resul-

tant posterior is correct, as our parameter recovery experiments show, and SBC

runs will be required for each modification to simulator and summary statistics.

The issues with the SNLE method in the first set of experiments also point to

the limitations of treating SBI as a black box inference process. We proposed a

possible solution in Section 4.10.1, but this will require us to make a bespoke

density estimator for this simulator, limiting the flexibility.

The SBI approaches also introduce a large number of free hyperparameters

that the user needs to select. In general we opted to use the default settings

provided by the sbi package (Tejero-Cantero et al. 2020). It is possible that

better hyperparameters could have resolved some of the issues with SNPE

producing broad estimates in the final set of experiments. If we were drawing

Chapter 4. Inference for Pileup Processes 97

all proposals from the prior, we could do hyperparameter optimisation through

cross-validation by evaluating the chosen SNPE loss on a held-out dataset.

With the sequential variant, it is not immediately obvious how we should do

this, as fitting the conditional density estimator is done over several rounds,

with previous fits affecting the generation of data used to train subsequent

estimators.

4.10.3 Computational Performance

It is hard to make comparisons between the SBI and MCMC methods in terms

of absolute running time due to the differences in approach and numerical

frameworks. However, our timing experiments have shown that the SBI ap-

proaches have favourable scaling properties with respect to the dataset size,

and for larger dataset sizes they have a substantial advantage.

Previous work has shown that SBI methods can outperform MCMC meth-

ods in terms of run time by several orders of magnitude (Green and Gair 2021;

Hahn and Melchior 2022). These examples involved posteriors with computa-

tionally expensive likelihoods but no nuisance parameters. They also used the

amortized SBI variants trained solely on simulations using parameters drawn

from the prior. Consequently they make the assumption of ignoring training

time when comparing against MCMC methods, which is reasonable consider-

ing that they were intended to be used repeatedly with different datasets. By

contrast, our results show that SBI can also be competitive with MCMC in terms

of run time even in the non-amortized case when the full posterior involves a

large number of nuisance variables, including training time as well as sampling

from the final posterior.

4.10.4 Diagnostics

One of the most useful aspects of the MCMC approach are the diagnostics we

get when using adaptive HMC. Whilst it took several rounds of running the

parameter recovery experiment and debugging to eliminate all of the diagnostic

errors, when we had finally done so we were confident that the inference process

was correct. Subsequently we only required one round of SBC experiments to

show that it worked.

Chapter 4. Inference for Pileup Processes 98

By contrast, the standard approaches in the literature to SBI have no useful

diagnostics beyond the benchmarks used to compare performance, which

often require access to a ground-truth posterior (Lueckmann, Boelts, et al.

2021). Consequently, even though the parameter recovery experiments were

producing reasonable estimates, we had to rely solely on the SBC experiments

in order to be confident that each method was correct. This required several

rounds of modifying summary statistics and prior choices followed by SBC

experiments, which could potentially erode any computational advantages of

the SBI methods. As mentioned in Section 4.6.3.1, we adapted the practice of

running multiple independent MCMC chains by running multiple independent

SBI runs and computing the potential scale reduction factor R̂ across all runs.

Whilst not a sufficient condition for correctness, a reasonable R̂ value is a

necessary one, and the poor values observed for SNLE did correspond to that

method failing the SBC checks whilst being much quicker to run.

4.10.5 Conclusion

Our experiments have indicated that the SBI approaches should generally be

considered the preferable approach for the pileup problems considered here,

especially SNRE. The credible intervals of the posterior parameter estimates of

have comparable widths to those produced with the MCMC approaches, and

appear to be correct. Unlike MCMC, it is much easier to implement without

careful derivation of target density functions suitable for use with HMC, and

has the advantage of the run time not scaling significantly with dataset size.

However, it is difficult to be certain that our posterior estimates are correct

without checking the calibration using SBC, with the requirement for a large

number of repetitions undermining some of the computational advantages

of SBI. Better diagnostics for SBI methods could help mitigate this, and the

adaption of computing the R̂ values across multiple runs is a step towards this.

Under certain circumstances the MCMC-based approaches could still be

useful. Careful consideration of the problem allows the likelihood to be made

tractable for use with HMC via marginalisation and appropriate parametri-

sations, and at smaller dataset sizes the run times are comparable. Certain

posteriors can be more amenable to HMC than others, as indicated by the rela-

tive performances of HMC with light-tailed uncensored data and heavy-tailed

Chapter 4. Inference for Pileup Processes 99

censored data. Whilst difficult to implement, the availability of informative

diagnostics meant we could be confident in the resultant posterior estimates

without having to resort to expensive repeated runs of the method to perform

the SBC checks.

Chapter 5

Scalable Extreme Deconvolution

5.1 Introduction

Extreme deconvolution is a method that fits Gaussian mixture models (GMMs)

to noisy data where we know the covariance of the Gaussian noise added

to each sample (Bovy, Hogg, and Roweis 2011). The method was originally

developed to perform probabilistic density estimation on the dataset of stellar

velocities produced by the Hipparcos satellite (Perryman et al. 1997). The

Hipparcos catalogue consists of astrometric solutions (positions and velocities

on the sky) and photometry (light intensity) for 118,218 stars, with associated

noise covariances provided for each entry. The method has subsequently been

widely used in variety of astronomical applications, including the analysis of

quasars (White et al. 2012) and the estimation of the stellar halo mass of the

Milky Way (Deason, Belokurov, and Sanders 2019). It has also been used in

fields beyond astronomy including genetics (Urbut et al. 2019; Griesemer et al.

2021).

The successor to the Hipparcos mission, Gaia, aims to produce an even larger

catalogue, with entries for an estimated 1 billion astronomical objects (The Gaia

Collaboration 2016). Previous work using extreme deconvolution on the Gaia

catalogue worked with a subset of the data and restricted the number of mixture

components, but the intention is to fit models with the full dataset (Anderson

et al. 2018). The existing extreme deconvolution method makes a full pass over

the dataset before it can update parameters, and the reference implementation

requires all the data to fit in memory. To fit such large datasets in reasonable

time, we would normally use stochastic or online methods, with updates based

100

Chapter 5. Scalable Extreme Deconvolution 101

on minibatches of data to make the methods practical on GPUs (Bottou, Curtis,

and Nocedal 2018).

In this chapter, we develop two minibatch methods that extend the original

extreme deconvolution method and enable the use of these stochastic methods,

allowing us to fit models to larger datasets more easily. The first is based on

an online variation of the expectation-maximisation (EM) algorithm and the

second makes use of a gradient optimizer. Our implementations can run on

GPUs, and provide comparable density estimates to the existing method, whilst

being much faster to train.

5.2 Background

The aim of extreme deconvolution is to perform density estimation on a noisy

d-dimensional observed dataset {xi}Ni=0, where xi was generated by adding

zero-mean Gaussian noise ϵi with known per-datapoint covariance Si to a

known projection Ri of a latent noise-free value zi,

xi = Rizi + ϵi, ϵi ∼ N (0, Si). (5.1)

We are interested in the distribution of noise-free values rather than noisy values,

so we wish to fit a density estimator to z, p(z | θ) with parameters θ. This density

estimator can be fitted even if we do not have access to the noise-free values by

finding the parameters that maximise the marginal log-likelihood,

L(θ) =
N∑
i

log

∫
N (xi | Rizi, Si)p(zi | θ) dzi. (5.2)

We assume that zi can be modelled by a mixture of Gaussians with K

components,

p(zi | θ) =
K∑
j

αj N (zi |mj, Vj), θ = {αj,mj, Vj}Kj=1, (5.3)

parametrised by mixture weight αj , mean mj and covariance Vj collectively

indicated by θ. As the noise model is Gaussian and the model of the underlying

density is a mixture of Gaussians, the probability of xi is also a Gaussian mixture.

The marginal log-likelihood of the model therefore becomes

L(θ) =
N∑
i

log
K∑
j

αj N (xi | Rimj, Tij), Tij = RiVjR
T
i + Si. (5.4)

Chapter 5. Scalable Extreme Deconvolution 102

The extreme deconvolution approach can be thought of as belonging to a

class of inference techniques known as Empirical Bayes (Carlin and Louis 2000).

The density estimator p(z | θ) is the prior distribution, whilst the noise model is

the likelihood. Rather than fixing the prior based on our pre-existing beliefs as

in a conventional Bayesian analysis, we fit it to the data. This can be effective if

we have large quantities of data so that we can avoid overfitting the prior.

5.2.1 Expectation-Maximisation

The expectation-maximisation (EM) algorithm is a common method for fitting

mixture models by maximising the marginal log-likelihood L(θ) (Dempster,

Laird, and Rubin 1977). Here we follow the derivation of Murphy (2012) for

a general latent variable model with observed variables xi, latent variables zi
and parameters θ.

We start by defining the complete data log-likelihood

LC(θ) =
N∑
i

log p(xi, zi | θ). (5.5)

This cannot be evaluated because we do not know the values of zi. Instead, we

can evaluate the expected complete data log-likelihood,

LE(θ) =
N∑
i

Ep(zi|xi,θ)[log p(xi, zi | θ)] (5.6)

where the expectation is with respect to the posterior over latent variables

p(zi | xi, θ). For the models typically used with EM including GMMs, the

posterior has a closed-form and many expectations of interest under it can be

calculated using its sufficient statistics. We can modify the expected complete

data log-likelihood to produce the auxiliary function,

Q(θt, θt−1) =
N∑
i

Ep(zi|xi,θt−1)[p(zi,xi | θt)], (5.7)

computed as part of an iterative procedure, using at step t the previous esti-

mates of the parameters θt−1 to compute the expectations, whilst using the new

estimate of the parameters θt to evaluate the complete-data log-likelihood.

Starting with an initial set of parameters, the EM algorithm proceeds iter-

atively by finding the sufficient statistics of the posterior at iteration t in the

Chapter 5. Scalable Extreme Deconvolution 103

expectation step (E-step) using θt−1, then finding the value of θt that maximises

Q(θt, θt−1) in the maximisation step (M-step). Again, for the models typically

used with EM, the M-step has a closed-form solution where the parameters are

computed by normalising sums of the expected sufficient statistics.

To show how this procedure optimises the marginal likelihood, consider

writing the marginal log-likelihood as an expectation under an arbitrary distri-

bution q(z),

L(θ) =
N∑
i

log p(xi | θ), (5.8)

=
N∑
i

log

[∫
p(xi, zi | θ) dzi

]
, (5.9)

=
N∑
i

logEq(zi)

[
p(xi, zi | θ)

q(zi)

]
. (5.10)

Jensen’s Inequality states that for any concave function f(u) and probability

distribution q(u) expectations of the function form a lower bound on functions

of the expectation,

f(Eq(u)[u]) ≥ Eq(u)[f(u)]. (5.11)

As log(u) is a concave function, we can form a lower-bound on Equation 5.10,

L(θ) ≥
N∑
i

Eq(zi)

[
log

p(xi, zi | θ)
q(zi)

]
, (5.12)

≥
N∑
i

Eq(zi) [log p(xi, zi | θ)]− Eq(zi) [log q(zi)] . (5.13)

If we evaluate L(θ) at θt and set q(zi) to p(zi | xi, θ
t−1) then the first term in

Equation 5.13 becomes the auxiliary function,

L(θt) ≥ Q(θt, θt−1)− Ep(zi|xi,θt−1)

[
log p(zi | xi, θ

t−1)
]
. (5.14)

As the second term in Equation 5.14 is not a function of θt, maximising Q(θt, θt−1)

with respect to θt will also maximise L(θt). If we rewrite Equation 5.13 in terms

Chapter 5. Scalable Extreme Deconvolution 104

of the posterior p(zi | xi, θ
t), and set q(zi) to it, we get

L(θt) ≥
N∑
i

{
Ep(zi|xi,θt)

[
log p(zi | xi, θ

t) + log p(xi | θt)
]

− Ep(zi|xi,θt)

[
log p(zi | xi, θ

t)
]}

,

(5.15)

≥
N∑
i

Ep(zi|xi,θt)

[
log p(xi | θt)

]
, (5.16)

=
N∑
i

log p(xi | θt) (5.17)

so the lower bound becomes tight and L(θt) = Q(θt, θt).

We have Q(θt−1, θt−1) = L(θt−1) from Equation 5.17. By definition, we have

picked a value θt such that Q(θt, θt−1) ≥ Q(θt−1, θt−1). As the bound was tight

at Q(θt−1, θt−1) and because maximising Q(θt, θt−1) will also maximise L(θt)
according to Equation 5.14, L(θt) ≥ Q(θt, θt−1). Therefore,

L(θt) ≥ Q(θt, θt−1) ≥ Q(θt−1, θt−1) = L(θt−1), (5.18)

L(θt) ≥ L(θt−1). (5.19)

so every successive step of the EM algorithm will monotonically increase the

marginal log-likelihood and move closer towards a local maximum.

5.2.1.1 Expectation-Maximisation for the Extreme Deconvolution Model

To make this derivation more concrete, we consider the steps for the specific

case of the extreme deconvolution method. Bovy, Hogg, and Roweis (2011)

make use of the fact that with a GMM prior and Gaussian noise, the distribution

over a latent datapoint zi conditioned on an observed datapoint xi is also a

GMM,

p(zi | xi, Si, Ri) =
K∑
j

rijN (zi | bij, Bij). (5.20)

The E-step consists of computing the parameters of this GMM,

rtij =
αt−1
j N (xi | Rim

t−1
j , T t−1

ij)∑
k α

t−1
k N (xi | Rim

t−1
k , T t−1

ik)
, (5.21)

bt
ij = mt−1

j + V t−1
j RT

i (T
t−1
ij)−1(xi −Rim

t−1
j), (5.22)

Bt
ij = V t−1

j − V t−1
j RT

i (T
t−1
ij)−1RiV

t−1
j . (5.23)

Chapter 5. Scalable Extreme Deconvolution 105

The rij term is the probability of datapoint xi coming from component j. The

bij and Bij terms result from the fact that xi and zi are jointly Gaussian given

component j, so the distribution of zi conditioned on xi given component j is

also Gaussian with mean bij and covariance Bij .

The M-step consists of finding the parameters which maximise the expected

complete data log-likelihood by summing together the expected sufficient

statistics,

αt
j =

1

N

N∑
i

rtij, (5.24)

mt
j =

1∑N
i rtij

N∑
i

rtijb
t
ij, (5.25)

V t
j =

1∑N
i rtij

N∑
i

rtij
[
(mt

j − bt
ij)(m

t
j − bt

ij)
T +Bt

ij

]
. (5.26)

Alternating between these two steps will result in finding parameters θ

corresponding to a local-maximum of the marginal log-likelihood given by

Equation 5.4. Careful initialisation can avoid degenerate local maxima (for

example, a model where one component has a weight αj = 1 and the rest zero)

but finding the global optimum is NP-hard (Drineas et al. 2004; Aloise et al.

2009).

For many problems, some of the values in a single sample may be missing.

This can be handled by making the projection matrix rank-deficient, so that

the observed sample xi is a subset of the latent sample zi. Alternatively, values

of the noise covariance Si can be set to very large values. For the case where

samples are completely missing or under-sampled as a result of truncation

effects, Melchior and Goulding (2018) propose an extension to the EM algorithm

that handles this by imputing the missing values.

5.3 Methods

The method for fitting the GMM presented in Section 5.2.1 is a batch algorithm,

requiring us to compute the E-step for every datapoint in the dataset before

we can perform the M-step. The reference implementation of Bovy, Hogg, and

Roweis (2011) requires all of the data to fit in memory, which is unfeasible

for large datasets such as the Gaia catalogue without resorting to specialised

Chapter 5. Scalable Extreme Deconvolution 106

servers. Even if we could make use of a machine with sufficient memory or

wrote an implementation that streamed the data from disk, we might be able to

converge faster if we only looked at small minibatches of data at each iteration

before updating the parameters.

5.3.1 Minibatch Expectation-Maximisation

Here we describe a minibatch version of the EM algorithm based on Cappé and

Moulines (2009)’s online EM algorithm for latent data models. At each iteration

t, we compute the sufficient statistics of the latent data vi for each component j

using our current estimate of the parameters in the E-step as before, but this

time only over a minibatch of data of size M rather than the whole dataset of

size N .

The expected sufficient statistics are then summed together over the mini-

batch,

qtj =
M∑
i

rtij, (5.27)

stj =
M∑
i

rtijb
t
ij, (5.28)

St
j =

M∑
i

rtij[b
t
ijb

tT
ij +Bt

ij]. (5.29)

Stochastic estimates ϕ̂t
j of the sums of sufficient statistics over the whole dataset

are then updated with a sufficiently small step size λ,

ϕt
j = {qtj, stj, St

j}, (5.30)

ϕ̂t−1
j = {q̂t−1

j , ŝt−1
j , Ŝt−1

j }, (5.31)

ϕ̂t
j = (1− λ)ϕ̂t−1

j + λϕt
j. (5.32)

Finally, we normalise the updated sums of expected sufficient statistics to

get updated estimates of the parameters,

Chapter 5. Scalable Extreme Deconvolution 107

αt
j =

q̂tj
M

, (5.33)

mjt =
ŝtj
q̂tj
, (5.34)

V t
j =

Ŝt
j

q̂tj
−mt

jm
tT
j . (5.35)

This procedure is repeated with new randomly-ordered minibatches until

convergence. If we set λ = 1 and replace each minibatch with the entire dataset,

then the update corresponds to the original batch fitting method. Numerically

however, the update for Vj , as written in Equation 5.35, is inadvisable compared

to the batch update given in Bovy, Hogg, and Roweis (2011). Catastrophic

cancellation can occur if the variances of the components are small relative to

the means, especially if single precision floats are used, as is standard with GPU

computation (Schubert and Gertz 2018).

5.3.1.1 Stable Covariance Update

Here we present an alternative update for Vj that is less prone to numerical

instability, and show that it is equivalent to Equation 5.35. For clarity we drop

the component indicator j from the parameter.

First, we define an adjustment operation,

adjust(V, s, c,d) = sV +
1

2
(
√
sc− d)(

√
sc+ d)T +

1

2
(
√
sc+ d)(

√
sc− d)T

(5.36)

= s(V + ccT)− ddT , (5.37)

which can be thought of as recentring a scaled variance around a new mean.

Equation 5.36 is how we actually compute the adjustment, to minimise taking

small differences between large values, whilst Equation 5.37 shows the identity

we are interested in.

In the M-step at iteration t of our minibatch EM approach, we compute

estimates of q̂t, αt and mt as before using Equations 5.32 and 5.35. We also

compute minibatch-specific parameters using exact sums over the minibatch:

qb =
M∑
i

ri, mb =

∑M
i rixi

qb
, Vb =

∑M
i ri[(xi − bi)(xi − bi)

T +Bi]

qb
(5.38)

Chapter 5. Scalable Extreme Deconvolution 108

We then compute our new estimate of the variance Vt as a function of the

previous estimates {q̂t−1,mt−1, Vt−1}, the minibatch values {qb,mb, Vb}, and the

current estimates {q̂t,mt}:

Vt = (1− λ) adjust(Vt−1,
q̂t−1

q̂t
,mt−1,mt) + λ adjust(Vb,

qb
q̂t
,mb,mt) (5.39)

= (1− λ)

[
q̂t−1

q̂t

(
Vt−1 +mt−1m

T
t−1

)
−mtm

T
t

]
+ λ

[
qb
q̂t

(
Vb +mbm

T
b

)
−mtm

T
t

] (5.40)

= (1− λ)

[
Ŝt−1

q̂t
−mtm

T
t

]
+ λ

[
St

q̂t
−mtm

T
t

]
(5.41)

=
(1− λ)Ŝt−1 + λSt

q̂t
−mtm

T
t (5.42)

=
Ŝt

q̂t
−mtm

T
t (5.43)

Again, Equation 5.39 is how we actually compute the update to minimise nu-

merical errors, whilst Equation 5.43 shows that the update is equivalent to

the covariance update defined in Equation 5.35. Whilst we found this update

worked better in practice than a direct implementation, numerical instability

is still possible. In particular, it is possibly for the prior distribution p(z) and

marginal distribution p(x) to have well-behaved covariances for each compo-

nent, whilst the posterior distribution p(z | x, S) can have singular covariances

for particular values of zi in the training dataset.

5.3.2 Stochastic Gradient Descent

An alternative to EM-based methods is to optimise the marginal log-likelihood

(Equation 5.4) directly using stochastic gradient descent (SGD, Bottou, Curtis,

and Nocedal 2018). The optimization is constrained, because the mixture

weights aj are positive and sum to 1, and the covariances Vj are positive definite.

Directly fitting the log-likelihood with unconstrained gradient-based optimisers

requires a transformation of the parameters to remove the constraints (Williams

1996). The mixture weights αj can be parameterised by taking the softmax of

an unconstrained vector u,

αj =
euj∑K
k=1 e

uk

. (5.44)

Chapter 5. Scalable Extreme Deconvolution 109

The covariances Vj can be represented by their lower triangular Cholesky de-

composition Lj , where the diagonal elements qq of Lj are constrained positive

by taking the exponential of unconstrained elements L̃q,

(Lj)qq = exp(L̃q), (5.45)

Vj = LjLj
T . (5.46)

Having removed the constraints, we can optimise the likelihood using any

standard minibatch gradient-based optimiser. In our implementation we use

the Adam optimiser (Kingma and Ba 2014). We can avoid having to manually

work out the gradients by making use of the automatic differentiation available

in many numerical computing packages (Baydin, Pearlmutter, et al. 2018). Im-

plementation is straightforward, with code for the log-probability calculations

available in many frameworks, and even the code for performing the necessary

reparameterisations (Bingham et al. 2019).

For a standard Gaussian mixture model, gradient based optimization has a

scaling advantage over EM. There is no need to form the D×D covariance matrix

Vj , since the Gaussian density can be evaluated directly from the Cholesky factor

Lj in O(D2), whereas an EM update is O(D3). Unfortunately SGD updates

are also O(D3) for the extreme deconvolution model, as we need to form the

covariance Tij for each datapoint.

5.4 Experiments

We implemented both minibatch approaches in PyTorch (Paszke et al. 2019),

and compared against the reference implementation from Bovy, Hogg, and

Roweis (2011). To evaluate each method, we first run them on a toy synthetic

problem to check their correctness. We then ran them using data from the Gaia

catalogue to evaluate and compare their performance.

Chapter 5. Scalable Extreme Deconvolution 110

5.4.1 Synthetic Data

First, we use a simple 2D 2-component Gaussian mixture model as our latent

distribution with mixture weights, means and covariances

α = 0.5, (5.47)

µ0 = µ1 = [0, 0], (5.48)

C0 =

[
1.0 0.0

0.0 0.1

]
, (5.49)

C1 =

[
0.1 0.0

0.0 1.0

]
, (5.50)

ki ∼ Bernoulli(α), (5.51)

zi ∼ N (mki , Cki). (5.52)

Figure 5.1a shows a corner plot of samples drawn from this mixture model.

We set the projection matrix Ri to the identity matrix for every sample.

Noise was added by generating a diagonal covariance Si for each datapoint zi,

sampling a value sid for each entry on the diagonal from a unit scale Log-normal

distribution, then multiplying it by a noise-scale factor η before squaring to get

the variance. A noise vector ϵi was then sampled from a multivariate normal

with zero mean and Si covariance,

sid ∼ LogNormal(0, 1), d ∈ {0, 1} (5.53)

Si =

[
(ηsi0)

2 0

0 (ηsi1)
2

]
, (5.54)

ϵi ∼ N (0, Si). (5.55)

The use of the noise-scale η allows us to control the relative size of the noise

compared to the latent data z. Figure 5.1b shows a corner plot of the observed

data x drawn using this scheme and a noise-scale factor η of 0.1

We fitted both our minibatch-EM and SGD methods to this data generated

using a noise-scale factor η of 0.1 and setting K to 2. We generated 2 million

samples for the training set, reserving 10% for a held-out validation set. Ap-

pendix A.1 contains additional details for reproducibility. We also fitted the

reference implementation of Bovy, Hogg, and Roweis (2011) as a baseline.

Chapter 5. Scalable Extreme Deconvolution 111

4 2 0 2 4

z1

4
2
0
2
4

z 2

4 2 0 2 4

z2

(a) Corner plot of latent z samples from the two component mixture data problem.

4 2 0 2 4

x1

4
2
0
2
4

x 2

4 2 0 2 4

x2

(b) Corner plot of noisy observed x samples from the mixture data problem.

Figure 5.1: Latent noise-free and observed noisy training samples from the

mixture data problem described in Section 5.4.1. The Gaussian noise blurs out

the underlying latent distribution.

Chapter 5. Scalable Extreme Deconvolution 112

Table 5.1: Mean per-datapoint validation log-likelihoods averaged over five runs

for a two component model fitted to the synthetic data using each method as

described in Section 5.4.1. All methods have comparable results, with the SGD

method doing slightly better.

log p(x) log p(z)

Existing EM −1.463± 0.002 −1.121± 0.008

Minibatch EM −1.464± 0.000 −1.120± 0.000

SGD −1.460± 0.000 −1.107± 0.000

Table 5.1 reports mean log-likelihoods for both p(x) and p(z) using the

validation dataset, averaged over 5 runs. The values are all roughly comparable.

Figure 5.2 shows corner plots of example samples from p(z) fitted with each

method, along with samples from the ground-truth distribution. We can see

that each method has managed to recover the underlying noise-free distribution.

This is a straightforward model to fit, so we cannot make any claims of superior

performance for a particular method, but it demonstrates that they are behaving

correctly.

5.4.2 Gaia Data

We used a random sample of rows from the Gaia DR3 source table (The Gaia

Collaboration 2022). Each sample consist of five measurements of a particular

star’s position and motions1, referred to as astrometric measurements, and

has a full-covariance Gaussian noise level associated with it. In total there

were 2 million rows divided into training, validation and test sets. We set

the projection Ri to the identity matrix for every sample. This experiment

uses only a small fraction of the full dataset size (approximately 0.1%), but

this allows us to fit the training data into memory, a requirement for use with

the original implementation of extreme deconvolution. We used a range of

mixture component sizes K. In practice we would want to select a value of K

by cross-validation.

The existing EM method ran on CPU, whilst the minibatch EM and SGD

1Right ascension, declination, parallax and proper motions in the right ascension and
declination directions.

Chapter 5. Scalable Extreme Deconvolution 113

4 2 0 2 4
z1

4

2

0

2

4

z 2

Ground Truth

4 2 0 2 4
z1

4

2

0

2

4

z 2

Existing EM

4 2 0 2 4
z1

4

2

0

2

4

z 2

Minibatch EM

4 2 0 2 4
z1

4

2

0

2

4

z 2

SGD

Figure 5.2: Examples of models fitted with each method to the two-component

synthetic dataset along with the ground-truth, show as histograms of samples

from p(z) using the format as described in Section 2.2.1. Each method has

visually matched the shape of the underlying noise-free distribution.

Chapter 5. Scalable Extreme Deconvolution 114

methods ran on GPU. While the absolute times depend strongly on hardware

and fine implementation details, they give a sense of the sort of times possible

on current workstations, and the relative times across model sizes illustrate

how the methods scale. We used a validation set comprising 10% of the rows

when developing our experiments. Final model performance was evaluated

on a different held-out test set comprising an additional 10% of the rows at the

last stage, with no parameter selection or development done based on this set.

Additional details required for reproducibility are provided in Appendix A.2.

Table 5.2 reports the training and validation log-likelihoods for each method.

In this experiment we are using real data, so we only have access to the noisy

values x and cannot report log-likelihoods for p(z). The minibatch-EM method

required a small value (10−3) to be added to the diagonal of the component co-

variances to ensure numerical stability, so the results are not exactly comparable.

In general at the larger values of K the SGD method appears to outperform both

EM-based methods. After comparing on the validation results, we evaluated

log p(x) on the test set for K = 512 to confirm there was no overfitting.

Figure 5.3 plots the training log-likelihood against time-rescaled epoch for

K = 256. Both minibatch methods converge faster in terms of wall-clock time.

We also found them to converge faster by number of training epochs. Figure 5.4

shows total training time as function of mixture components K. Both minibatch

methods are faster than the baseline as they utilise a GPU for computation, with

the SGD method being slightly faster than the Minibatch EM method as it does

not have to compute the posterior parameters.

Chapter 5. Scalable Extreme Deconvolution 115

Table 5.2: Average per-datapoint validation log-likelihoods for the Gaia data

subset for different numbers of mixture components K, with average test log-

likelihood for the best value of K by validation. Averaged over 5 runs with

standard deviation.

Train log p(x) Val log p(x) Test log p(x)

Method K

Existing EM

64 −16.017± 0.007 −16.016± 0.006 –

128 −15.978± 0.006 −15.980± 0.005 –

256 −15.953± 0.002 −15.958± 0.002 –

512 −15.936± 0.000 −15.944± 0.000 −15.933± 0.001

Minibatch EM

64 −15.986± 0.007 −15.989± 0.008 –

128 −15.959± 0.001 −15.964± 0.001 –

256 −15.948± 0.001 −15.954± 0.001 –

512 −15.944± 0.000 −15.950± 0.000 −15.941± 0.000

SGD

64 −16.003± 0.007 −16.007± 0.008 –

128 −15.961± 0.002 −15.966± 0.002 –

256 −15.936± 0.001 −15.942± 0.001 –

512 −15.921± 0.001 −15.929± 0.001 −15.920± 0.001

Chapter 5. Scalable Extreme Deconvolution 116

10
2

10
3

10
4

Time-scaled Epoch (s)

17.50

17.25

17.00

16.75

16.50

16.25

16.00

15.75

15.50

lo
gp

(x
)

Existing EM
Minibatch EM
SGD

Figure 5.3: Average training log-likelihood as a function of training on the Gaia

subset for models with K = 256. Epochs rescaled by the average training time

for each method. Error bars show ± 2 standard deviations. Note the log-scale

on the time axis, and that the start of the curve for the existing EM method has

been clipped.

64 128 256 512
Components K

0

100

200

300

400

500

Tr
ai

ni
ng

 ti
m

e
(m

in
ut

es
)

Existing EM
Minibatch EM
SGD

Figure 5.4: Training time as a function of mixture components K. Error bars

indicate ± 2 standard deviations. Training time appears to be linear as expected.

The minibatch methods running on GPU are considerably faster than the existing

EM implementation running on CPU.

Chapter 5. Scalable Extreme Deconvolution 117

5.4.3 Pitfalls

Here we describe two problematic issues a practitioner using this method

for deconvolution could encounter with real-world problems, using synthetic

datasets to demonstrate them. Although these demonstrations were done with

the SGD method, the issues highlighted are not specific to the fitting method

and affect both the minibatch-EM and batch-EM methods as well.

5.4.3.1 Overparameterised Model

Here we show how the validation log-likelihood alone cannot be used to assess

model performance, with a simple synthetic example. We first generate data in

one dimension by drawing both values of zi and noise values ϵi from standard

univariate normals,

zi ∼ N (0, 1), (5.56)

ϵi ∼ N (0, 1), (5.57)

xi = zi + ϵi. (5.58)

Fitting a single Gaussian to this in the deconvolution setting is straightfor-

ward, and in practice with our implementations this can be done by fitting

a single-component “GMM”. We instead fit an overparametrised GMM with

32 components using the SGD method, a training set of 9000 samples and a

validation set of 1000 samples. The overparametrised GMM was initialised to

have equal weights for each component, with component means initialised to

be linearly spaced between −3 and +3 and component standard deviations set

to 0.001.

Table 5.3 reports validation log-likelihoods for both p(z) and p(x) for the

fitted model along with ground-truth values. Unsurprisingly the overparame-

terised model has overfitted the noise-free data and this is reflected in validation

log-likelihood for p(z) being several orders of magnitude smaller. However, the

validation log-likelihoods for p(x) are much closer. In a real modelling situation

we would only have access to log p(x) and hence would not be able to detect

the overfit based solely on these values.

To see why this happens, in Figure 5.5 we plot the PDFs for both the ground-

truth model and the fitted model over both z and x.2 The fitted density estimator

2As we use the same standard deviation for every noise-value ϵi there is only a single PDF

Chapter 5. Scalable Extreme Deconvolution 118

Table 5.3: Per-datapoint validation log-likelihoods for the overparametrised

model, along with values from the ground-truth model. There are extreme

differences in the values for z compared to the differences for z.

Model log p(z) log p(x)

Ground Truth -1.4168 -1.7569

Fitted -4314.0239 -1.7581

for log p(z) is far from the ground truth, consisting of a series of narrow spikes.

However, when convolved with the noise distribution the fitted density is

almost identical to the convolved ground truth, to the extent that in some pilot

runs with only a small finite set of validation samples we observed the fitted

density having a (slightly) better validation score.

This is a contrived example requiring a massively overparametrised density

estimator and large noise values of equal scale to the data, but it demonstrates

that we should not rely solely on the validation log marginal-likelihood when

trying to assess fitted density estimators on noise-free data. Instead we should

aim to have additional methods of validating that the fitted density estimator is

behaving reasonably, especially if we have noise with scale comparable to the

noise-free data that will substantially blur the underlying distribution when

convolved with it. The choice of additional validation method will depend

strongly on the downstream task the deconvolved density estimator is intended

for. We could also choose to use a model selection criterion which penalises the

number of model parameters such as the Bayesian information criterion (BIC)

to select the number of components K (Schwarz 1978).

5.4.3.2 Conditional Noise

In our description of the problem in Section 5.4.1, we assumed that the noise

ϵi was drawn independently of the latent noise-free data zi, i.e. the noise co-

variance Si does not depend on the value of zi. In this section we show what

happens if this assumption is incorrect. We reuse the same two component

GMM ground-truth model from Section 5.4.1, but change the noise model. We

over x in this case, which is not true for the more general extreme deconvolution case where
the noise statistics can be different for each datapoint.

Chapter 5. Scalable Extreme Deconvolution 119

6 4 2 0 2 4 6
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30
p(

x)

Fitted Model
Data Distribution

6 4 2 0 2 4 6
z

0

5

10

15

20

25

p(
z)

Fitted Model
Ground Truth

Figure 5.5: Illustration of how a model p(z) overfitted to the latent data can

still result in a reasonable marginal distribution when convolved with the noise

distribution to produce p(x). This makes it hard to assess the quality of a fitted

model by relying solely on validation log-likelihoods on p(x).

Chapter 5. Scalable Extreme Deconvolution 120

define two covariance matrices,

S0 =

[
0.1 0.0

0.0 1.0

]
, (5.59)

S1 =

[
1.0 0.0

0.0 0.1

]
. (5.60)

When generating the data, we draw ϵi from a multivariate Gaussian with

covariance S0 if zi was drawn from the component j = 0 with covariance C0,

and with covariance S1 if C1 was used, so Si depends on zi. We then fit a

two-component GMM to this data using the SGD implementation. Unlike

in Section 5.4.1, we can no longer recover the ground-truth model exactly, as

shown in Figure 5.6. The fitted model has shrunk the distribution relative to

the observed data, but it is isotropic and has failed to recover the structure of

the latent data. If we resimulate the data generation by adding noise to samples

from the fitted model using the same scheme, the distribution of resimulated

data is wider than the original.

This example demonstrates that if we have reason to believe that the noise

in an observed dataset depends on the latent noise-free values (not an unreason-

able assumption for many real-world datasets including the Gaia catalogue (An-

derson et al. 2018)), we should be careful to note that the framework we have

presented will result in a misspecified model.

5.5 Discussion

Our results have shown that both of our proposed methods perform comparably

to the existing method of fitting extreme deconvolution model in terms of final

marginal log-likelihoods. For larger numbers of components K we found

the SGD method slightly outperformed the other methods. Both minibatch

methods converged considerably faster than the existing batch EM method,

which is consistent with similar results comparing online to batch EM in discrete

language tasks (Liang and Klein 2009).

The timing results show that using GPU-based computation speeds up

fitting considerably. Computational cost is dominated by the need to perform

K-component by N -datapoint Cholesky decompositions of the covariances Tij

each with O(D3) cost over every training epoch. PyTorch’s GPU-backed routine

Chapter 5. Scalable Extreme Deconvolution 121

4 2 0 2 4
z1

4

2

0

2

4

z 2

Ground Truth p(z)

4 2 0 2 4
z1

4

2

0

2

4

z 2

Fitted p(z)

4 2 0 2 4
x1

4

2

0

2

4

x 2

Observed p(x)

4 2 0 2 4
x1

4

2

0

2

4

x 2

Simulated p(x)

Figure 5.6: Histograms of ground-truth latent noise-free and observed noisy

samples where the noise covariance depends on the component z was sampled

from. The fitted model is unable to recover the underlying structure from the

observed data as it is misspecified.

Chapter 5. Scalable Extreme Deconvolution 122

for the Cholesky decomposition allows large numbers of these decompositions

to be done in parallel, leading to the large observed speed-up. For smaller

values of K and/or smaller minibatch sizes we even observed sub-linear scaling

on the GPU with the number of Cholesky decompositions performed. Our

astrometric experiments used only D = 5 features, so for models with larger

dimensionality we would expect the absolute difference in training times to

be even larger. Training time could also be saved by taking advantage of the

minibatch method’s faster convergence, requiring fewer epochs to reach the

same result. The SGD method is slightly faster than the minibatch-EM method,

as it avoids having to compute the posterior parameters on every step.

Both minibatch methods could be affected by numerical issues when run on

a GPU, as GPUs work primarily with single-precision floats. In Section 5.3.1.1

we noted that the GMM for the posterior p(z | x, S) could have components with

near-singular covariances even when the GMMS for the marginal distributions

p(x) and prior p(z) were well-behaved. This is not an issue for fitting with the

SGD method, as it does not require evaluating the posterior during training. If

we want to do post-hoc sampling from the posterior, the singular covariances

usually have small component weights associated with them, so we can modify

the sampling routine to drop those components. It is an issue for the minibatch

EM method, which requires the posterior parameters to be evaluated for the

E-step. The minibatch-EM also suffers from the posterior weights underflowing

for some components, resulting in divide-by-zero errors in the M-step and

requiring a small correction term to be added.

In our experiments we did not regularise our parameters beyond small

numerical adjustments required to ensure the stability of the minibatch-EM

method. Bovy, Hogg, and Roweis (2011) show that proper regularisation can

be done for the EM approach using conjugate priors on the parameters of the

GMM, turning the solution into a maximum-a-posterior (MAP) estimate. This

regularized objective function can also be optimized by our Minibatch-EM

method. The need for a conjugate prior is required in order to ensure the M-step

has a closed-form solution. This is particularly problematic for the prior over

covariances, as the conjugate distribution is the Inverse-Wishart distribution,

the parametrisation of which makes it hard to disentangle prior beliefs over

correlations and scales (Tokuda et al. 2011). By contrast we can do MAP esti-

mation with the SGD method using any prior we wish. This would allow us

Chapter 5. Scalable Extreme Deconvolution 123

to decompose the prior over covariances into a prior over correlations using

the Lewandowski-Kurowicka-Joe (LKJ) distribution (Lewandowski, Kurow-

icka, and Joe 2009), and separate priors over the scale or variances in each

dimension (Barnard, McCulloch, and Meng 2000).

In general, going forward we would recommend the SGD method as the

preferred method when fitting GMMs in the extreme deconvolution case, based

on the greater flexibility in regularisation, faster convergence, ease of implemen-

tation, better numerical stability and better validation performance. We would

also recommend the need for additional validation checks beyond just the vali-

dation marginal log-likelihood for any fitting method, as well as the need to be

aware that the model will be misspecified if noise depends on latent-data.

Chapter 6

Extreme Deconvolution with

Variational Inference

6.1 Introduction

In the previous chapter, we showed that fitting Gaussian Mixture Models

(GMM) to noisy data can be done in a scalable manner by making use of

minibatch optimisation methods and GPU computation, and that optimising

the marginal-likelihood directly with stochastic gradient-based methods can

perform better than expectation-maximisation (EM)-based methods. These

developments allow deconvolution to be done on much larger datasets such as

that produced by the Gaia astronomy mission, which will eventually contain

noisy measurements of approximately 1 billion astronomical objects (The Gaia

Collaboration 2016).

However, the approaches we outlined still have limitations. They require

the marginal likelihood to be tractable, generally restricting us to the case where

the density estimator is a GMM and the noise is Gaussian. Some datasets

may benefit from using more flexible density estimators such as normalising

flows (Papamakarios, Nalisnick, et al. 2021), and many datasets are corrupted

with non-Gaussian noise as well as Gaussian noise. Prior work has attempted

to fit normalising flows directly to noisy Gaia data, and has indicated potential

improvements over GMMs, but relied on a heuristic weighting scheme rather

than formally setting up the model as a deconvolution problem (Cranmer,

Galvez, et al. 2019).

In this chapter we show how these limitations can be removed by using

124

Chapter 6. Extreme Deconvolution with Variational Inference 125

amortised variational inference to optimise a lower-bound on the log marginal-

likelihood. This approach allows us to fit a much wider class of more-flexible

density estimators with better performance to the underlying noise-free data,

and to use datasets with non-Gaussian noise as well as Gaussian noise. We

demonstrate this application of variational inference works in practice, us-

ing experiments on both synthetic and real-world data with both GMMs and

normalising flows, as well as Gaussian and non-Gaussian noise. The results

show that normalising flows enabled by the use of variational inference can

outperform GMMs in terms of the density estimation.

6.2 Background

The aim of density deconvolution is to perform density estimation on some

noisy d-dimensional dataset {xi}Ni=1. We assume that each datapoint in the

dataset was generated by the addition of a noise vector ϵi to a latent noise-free

datapoint zi,

xi = zi + ϵi. (6.1)

The noise vector ϵi is drawn from some noise distribution

ϵi ∼ p(Si) (6.2)

where Si is a known set of parameters. Often p(Si) will be a zero-mean multivari-

ate Gaussian with Si as a covariance matrix, but this is not a strict requirement

for the approaches outlined in this chapter.

We wish to estimate the noise-free data probability density p(z) rather than

the noisy distribution p(x) by fitting a density estimator pθ(z) with parameters

θ. In the extreme deconvolution setting, we assume that the noise parameters

are unique to each datapoint (Bovy, Hogg, and Roweis 2011).

6.3 Theory

We can fit the density estimator by finding the parameters θ which maximise

the marginal likelihood

argmax
θ

N∏
i=1

p(xi) =
N∏
i=1

∫
p(xi | zi, Si) pθ(zi) dzi, (6.3)

Chapter 6. Extreme Deconvolution with Variational Inference 126

or equivalently the log-marginal likelihood.

argmax
θ

N∑
i=1

log p(xi) =
N∑
i=1

log

∫
p(xi | zi, Si)pθ(zi) dzi. (6.4)

In Chapter 5, we restricted the noise distribution p(xi | zi, Si) to be Gaussian

and the density estimator to be a mixture of Gaussians. This makes the integral

in Equation 6.4 tractable and means the marginal distribution p(x) and posterior

p(z | x, S) are also mixtures of Gaussians, allowing the marginal distribution to

be evaluated and optimised directly.

If we wish to use a different family of density estimators pθ(z) instead of a

mixture of Gaussians, or use more general noise models then the log-marginal

likelihood is no longer tractable in general. Fitting these more general models

will require us resort to approximate inference methods to estimate the marginal

likelihood.

6.3.1 Variational Inference

In this chapter we use variational inference as our approximate inference

method (e.g. Jordan et al. 1999). We follow the review of Kingma and Welling

(2019) to provide an overview of variational inference in our context.

We start by noting that in the general case described above, as well as being

unable to evaluate the marginal likelihood directly, we can no longer evaluate

the posterior density p(z | x, S) or easily draw samples from it. As an alternative,

we will try to fit an approximate posterior qϕ(z | x, S) to match the true posterior

as closely as possible by optimising its parameters ϕ. Importantly, we need to

be able to both sample from and evaluate the PDF of this approximate posterior.

Assuming we have an appropriate approximate posterior family, we need

an objective function in order to fit it. A common choice in variational inference

is the reverse Kullback–Leibler (KL) divergence, which gives us a quantitative

measure of how different one probability distribution is from another. The

reverse KL divergence DKL(q || p) between our approximate posterior qϕ(z | x, S)

Chapter 6. Extreme Deconvolution with Variational Inference 127

and the true posterior p(z | x, S) is formally defined as

DKL(qϕ(z | x, S) || p(z | x, S)) =
∫

qϕ(z | x, S)
log qϕ(z | x, S)
log p(z | x, S)

dz, (6.5)

=

∫
qϕ(z | x, S) log qϕ(z | x, S) dz−

∫
qϕ(z | x, S) log p(z | x, S) dz, (6.6)

= Eqϕ(z|x,S)[log qϕ(z | x, S)]− Eqϕ(z|x,S)[log p(z | x, S)] (6.7)

This divergence is non-negative (DKL ≥ 0), and it is exactly zero if and only

if the approximate posterior exactly equals the true posterior. We can also

similarly define the forward KL-divergence DKL(p || q) where the two distri-

butions are swapped. In general the KL divergence is not symmetric, i.e.

DKL(q || p) ̸= DKL(p|| q). The log terms allow us to interpret the KL diver-

gence in terms of information theory, and it is sometimes referred to as the

relative entropy (MacKay 2003, Chapter 2).

Even if our approximate posterior is tractable, we still cannot use the reverse

KL-divergence directly as a loss function, as Equation 6.7 requires us to be able

to evaluate log p(z | x, S). We can however derive a bound from it. Starting

from the definition of Bayes rule,

p(z | x, S) = p(x|z, S)pθ(z)
p(x)

, (6.8)

and therefore

log p(z | x, S) = log p(x|z, S) + log pθ(z)− log p(x). (6.9)

Substituting this expression for log p(z | x, S) into Equation 6.7 we can

rewrite the divergence as

DKL(qϕ(z | x, S) || p(z | x, S)) = Eqϕ(z|x,S)[log qϕ(z | x, S)]− Eqϕ(z|x,S)[p(x|z, S)]

−Eqϕ(z|x,S)[pθ(z)] + Eqϕ(z|x,S)[log p(x)],

(6.10)

and noting that log p(x) is not a function of z we can simplify it further to

DKL(qϕ(z | x, S) || p(z | x, S)) =Eqϕ(z|x,S)[log qϕ(z | x, S)]

− Eqϕ(z|x,S)[log p(x|z, S)]

− Eqϕ(z|x,S)[log pθ(z)]

+ log p(x).

(6.11)

Chapter 6. Extreme Deconvolution with Variational Inference 128

As DKL(q || p) ≥ 0, if we negate the expectation terms in Equation 6.11 they

form a lower bound on the log marginal likelihood or evidence log p(x), referred

to as the evidence lower bound (ELBO),

Eqϕ(z|x,S)[log p(x|z, S)]+Eqϕ(z|x,S)[log pθ(z)]−Eqϕ(z|x,S)[log qϕ(z | x, S)] ≤ log p(x).

(6.12)

The terms inside the expectations are tractable and by negation the lower bound

can be used as a loss function L(θ, ϕ), allowing us to jointly fit pθ(z) to the

noise-free data and qϕ(z | x, S) to the corresponding posterior p(z | x, S) by

optimisation with respect to both θ and ϕ,

L(θ, ϕ) = −Eqϕ(z|x,S)[log p(x|z, S)]−Eqϕ(z|x,S)[log pθ(z)]+Eqϕ(z|x,S)[log qϕ(z | x, S)].
(6.13)

The last two terms in Equation 6.13 equate to the KL divergence between

qϕ(z | x, S) and pθ(z). For certain choices of distribution family for qϕ(z | x, S)
and pθ(z) (e.g. both as Gaussian distributions) this KL divergence can be

evaluated analytically (Kingma and Welling 2013). In general for arbitrary

choices of distribution none of the expectations can be evaluated exactly, but we

can form a Monte Carlo estimate of the loss function using K samples drawn

from qϕ(z | x, S) (Rezende and Mohamed 2015),

L(θ, ϕ) ≈ − 1

K

[
K∑
k=1

log p(x | zk, S) + log pθ(zk)− log qϕ(zk | x, S)

]
. (6.14)

Vandegar et al. 2021 looked at a similar problem in the context of simulation-

based inference, in work published subsequently to the initial version of our

work (Dockhorn et al. 2020). They could not get variational inference to work

well for their applications, and instead made use of approaches that computed

the marginal likelihood as an expectation under the prior pθ(z), using Monte

Carlo estimates with samples drawn from pθ(z). These approaches will not

generally scale well as the dimensionality of z increases. The estimates will

generally be high-variance as most of the samples of z will be far from the data

x.

6.3.1.1 Approximate Posterior Choice

Having determined an objective for fitting the prior to maximise the log-

marginal likelihood by making use of an approximate posterior, we need to

Chapter 6. Extreme Deconvolution with Variational Inference 129

select an appropriate distribution qϕ(z | x, S). A simple choice would be to use

a Gaussian and optimise its mean µ and covariance Σ to maximise the ELBO.

There are two drawbacks to this approach

1. We would need to optimise a different set of parameters µi and Σi for

every observed datapoint xi and Si.

2. The posterior p(z | x, S) may not be close to Gaussian, limiting the ability

of qϕ(z | x, S) to approximate it.

The first issue can be solved by making use of amortized variational infer-

ence (Rezende, Mohamed, and Wierstra 2014; Kingma and Welling 2013). In-

stead of learning separate parameters for every datapoint, we will fit a neural

network that takes the noisy observation xi and the noise statistics Si as inputs

and outputs the parameters of the distribution to use as an approximate pos-

terior. Thus the cost of finding an appropriate posterior for each datapoint is

amortized through (spread across) the training of the neural network, and allows

our approximate posterior to generalise to future datapoints without the need

for refitting.

We can solve the second issue by using more flexible distributions (Rezende

and Mohamed 2015; Kingma, Salimans, et al. 2016). In this application we

choose to use normalising flows as a more expressive posterior approximation,

as we are already using them to model the prior pθ(z) and so there is not much

additional complexity required to implement them. If we use a conditional

normalizing flow with observed noisy data xi and noise statistics Si as the

conditioning variables, then our approximate posterior will also be amortized.

The choice of which form of normalising flow to use matters. For this work

we use autoregressive flows instead of coupling flows as they are generally

more expressive and the dimensionality of our problems are relatively low (Pa-

pamakarios, Nalisnick, et al. 2021). For autoregressive flows the invertible

transformation at each step of the flow is D times more expensive to evaluate

in one direction compared to the other direction as discussed in Section 2.4.2.

Therefore one of sampling from the distribution or log-probability evaluation

will be D times more expensive than the other.

During training, we need to sample from our approximate posterior qϕ(z |
x, S) and only evaluate the log-probability of those same samples. Thus it makes

sense to use flows following the form of the inverse autoregressive flow (IAF),

Chapter 6. Extreme Deconvolution with Variational Inference 130

where the autoregressive transformation is constructed from the base distribu-

tion towards the target distribution (Kingma, Salimans, et al. 2016). Drawing

a sample has D times less complexity than if we were to construct the autore-

gressive transformation in the other direction. Evaluating the log-probability of

each drawn sample can be done cheaply by caching the input and output of

each transformation step, to avoid explicitly inverting the transformation.

Conversely for the prior pθ(z) we do not need to sample from it during

training, but we do need to evaluate the log-probability of samples from the ap-

proximate posterior. Therefore we use flows following the form of the masked

autoregressive flow (MAF), where the autoregressive transformation is con-

structed from the target distribution towards the base distribution (Papamakar-

ios, Pavlakou, and Murray 2017). Evaluating the log-probability for any sample

is therefore D times less complex than if we constructed the flow in the other

direction.

For the posterior flow, one potentially useful improvement is to use a base

distribution π(z) proportional to the noise distribution p(x | z, S) instead of a

fixed distribution. This allows the approximate posterior to exploit the fact that

we do have some idea of where the value of z lies even without knowing the

prior. We have found this to improve the stability of training in cases where the

scale of the noise distribution is relatively small compared to the distribution of

the latent data z.

6.3.1.2 Gradients

We also need to be able to take gradients of the loss function with respect to

the parameters. For the parameters of the prior θ this is relatively straightfor-

ward, as the expectations in the loss function are with respect to a distribution

which is not a function of θ, so we can move the gradient operation inside the

expectations,

∇θL(θ, ϕ) = ∇θEqϕ(z|x,S)[log p(x|z, S) + log pθ(z)− log qϕ(z | x, S)], (6.15)

= Eqϕ(z|x,S) [∇θ (log p(x|z, S) + log pθ(z)− log qϕ(z | x, S))] . (6.16)

The gradients can be computed using automatic differentiation, and a Monte

Carlo estimate of the expectation can be made as in Equation 6.14.

Taking gradients of the loss with respect to ϕ is not so straightforward, as

the expectations are under qϕ(z | x, S) which is a function of ϕ. One option is

Chapter 6. Extreme Deconvolution with Variational Inference 131

to use the score function gradient estimator (Williams 1992), but this typically

produces high-variance gradient estimates (Mohamed et al. 2020).

An alternative approach is the reparametrisation trick, popularised in the

context of variational inference by Kingma and Welling (2013) and Rezende,

Mohamed, and Wierstra (2014). This approach makes of the fact that many of

the approximate posteriors we would wish to use can be written in terms of a

differentiable transform t(ϕ, ϵ) of samples ϵ from some fixed distribution p(ϵ)

by the parameters ϕ,

z = t(ϵ, ϕ), ϵ ∼ p(ϵ) (6.17)

This is true in the case of normalising flows by their definition, and also for many

families of distributions via a location-scale transformation, such as a Gaussian.

If we can perform this reparametrisation on our approximate posterior, then

we can move the gradient operation inside the expectation by rewriting them

as expectations under the fixed base distribution,

∇ϕL(θ, ϕ) = ∇ϕEqϕ(z|x,S)[log p(x|z, S) + log pθ(z)− log qϕ(z | x, S)], (6.18)

= ∇ϕEp(ϵ)[log p(x|t(ϵ, ϕ), S) + log pθ(t(ϵ, ϕ))− log qϕ(t(ϵ, ϕ) | x, S)]
(6.19)

= Ep(ϵ)[∇ϕ (log p(x|t(ϵ, ϕ), S) + log pθ(t(ϵ, ϕ))− log qϕ(t(ϵ, ϕ) | x, S))],
(6.20)

≈
K∑
k=1

[∇ϕ (log p(x|t(ϵk, ϕ), S) + log pθ(t(ϵk, ϕ))− log qϕ(t(ϵk, ϕ) | x, S))],

ϵk ∼ p(ϵ).

(6.21)

These gradients are easy to implement with automatic differentiation, and

often have a low enough variance that even estimates with K = 1 samples

are useable for parameter updates (Kingma and Welling 2013). Note that we

cannot apply the reparametrisation trick directly if we want to use a GMM

as a density estimator, as the choice of mixture component results in a non-

differentiable transformation. We can work around this by marginalising the

choice of mixture component out of the density estimator.

Chapter 6. Extreme Deconvolution with Variational Inference 132

6.3.2 Importance Weighting

Having fitted a model using the ELBO as an objective, we would like to be able

to evaluate the log marginal-likelihood log p(x) in order to judge how well it has

fitted the data and compare it to the exact GMM approach. If the approximate

posterior manages to match the true posterior exactly, then the KL divergence

between them will be zero and so the ELBO will equal log p(x). In practice this

will not happen precisely, so we need a different method to estimate the log

marginal-likelihood.

The importance weighted autoencoder (IWAE) proposes a bound using

importance weighting on log p(x) which is tighter than the ELBO, and will

asymptotically approach log p(x) as K →∞ (Burda, Grosse, and Salakhutdinov

2016). Adapting it for our case gives a lower bound on log p(x),

log p(x) ≥ Ez1,...,zK∼qϕ(z|x,S)

[
log

1

K

K∑
k=1

(
p(x | zk, S)pθ(zk)

qϕ(zk | x, S)

)]
, (6.22)

which can be evaluated easily using a sufficiently large value of K to estimate

the log marginal-likelihood at validation time.

6.4 Experiments

6.4.1 Synthetic Data

To validate our approach, we first try fitting models to synthetic data. This has

the advantage of allowing us to evaluate model performance on the underlying

latent data z, which would not normally be available, as well as on x.

Chapter 6. Extreme Deconvolution with Variational Inference 133

6.4.1.1 Mixture Data

First, we reuse the simple 2D 2-component Gaussian mixture model from

Section 5.4.1,

α = 0.5, (6.23)

µ0 = µ1 = [0, 0], (6.24)

C0 =

[
1.0 0.0

0.0 0.1

]
, (6.25)

C1 =

[
0.1 0.0

0.0 1.0

]
, (6.26)

ki ∼ Bernoulli(α), (6.27)

zi ∼ N (mki , Cki). (6.28)

Figure 5.1a shows a corner plot of samples drawn from this mixture model.

We use the same noise scheme by generating a diagonal covariance Si for

each datapoint zi, sampling a value sid for each entry on the diagonal from a

unit scale log-normal distribution, then multiplying it by a noise-scale factor η

before squaring to get the variance. A noise vector ϵi was then sampled from a

multivariate normal with zero mean and Si covariance,

sid ∼ LogNormal(0, 1), d ∈ {0, 1} (6.29)

Si =

[
(ηsi0)

2 0

0 (ηsi1)
2

]
, (6.30)

ϵi ∼ N (0, Si). (6.31)

The use of the noise-scale η allows us to control the relative size of the noise

compared to the latent data z. Figure 5.1b shows a corner plot of the observed

data x drawn using this scheme and a noise-scale factor η of 0.1

Two million samples were generated using this scheme with a noise-scale

factor η of 0.1 and divided into training and validation sets. We used an

unconditional normalising flow pθ(z) using the autoregressive variant of the

neural spline flow (NSF) to model the prior (Durkan, Bekasov, et al. 2019).

For the posterior, we used a conditional normalising flow qϕ(z | x, S) using

an affine masked autoregressive flow (MAF) (Papamakarios, Pavlakou, and

Chapter 6. Extreme Deconvolution with Variational Inference 134

Murray 2017). We choose the direction of each flow to maximise efficiency

during training as discussed in Section 6.3.1.1. We used the noise distribution

itself as the base distribution for the posterior flow. Both flows were fitted

jointly using the ELBO as a loss function for SGD.

As a comparison, a two component GMM was fitted to the same data using

the Extreme-Deconvolution method with SGD from Chapter 5. We also fitted a

two component GMM using variational inference, drawing samples from the

exact posterior to compute the ELBO. The marginal log-likelihood log p(x) was

estimated for the models fitted with variational inference using the importance

weighted bound given by Equation 6.22. Full experimental details are available

in Appendix B.1.

Table 6.1 shows the validation log-likelihoods averaged over datapoints

for both x and z, as well as the ELBO for the models fitted with variational

inference. The GMM fitted exactly does best on both log p(x) and log p(z), which

is unsurprising as it is the exact form of model used to generate the data. The

flow-based model is close to the GMM in terms of both log p(x) and log p(z), so

the extra flexibility and need to use variational inference did little harm.

Figures 6.1a and Figures 6.1b show samples from the fitted exact GMM and

flow priors respectively. They appear to be identical, and match the plot of

latent training samples from Figure 5.1a.

The GMM fitted using variational inference with the exact posterior has

done slightly worse in terms of log p(x), and much worse in terms of log p(z).

This result happens even if the GMM is initialised with the ground-truth pa-

rameters, as the higher variance of the gradients of the ELBO with respect

to the parameters pushes the GMM off the ground-truth setting and into a

local optima. This also demonstrates the problem where small differences in

log p(x) can correspond to much larger differences in log p(z) first discussed in

Chapter 5.

Chapter 6. Extreme Deconvolution with Variational Inference 135

4 2 0 2 4

z1

4
2
0
2
4

z 2

4 2 0 2 4

z2

(a) Corner plot of latent z samples from the fitted GMM prior.

4 2 0 2 4

z1

4
2
0
2
4

z 2

4 2 0 2 4

z2

(b) Corner plot of latent z samples from the fitted flow prior.

Figure 6.1: Samples from the GMM and flow priors fitted to the mixture data

problem from Section 6.4.1.1. Both produce very similar histograms.

Chapter 6. Extreme Deconvolution with Variational Inference 136

Table 6.1: Per-datapoint average validation log-likelihoods for the synthetic

data experiment using a mixture distribution. Error bars indicate the standard

deviation across five independent runs. The flow gets reasonably close to the

GMM in terms of modelling the noisy observed data and the latent observed

data, whilst the GMM fitted with variational inference does substantially worse

in terms of the latent data.

ELBO log p(x) log p(z)

GMM (Exact) – −1.460± 0.000 −1.107± 0.000

GMM (VI) −1.493± 0.000 −1.493± 0.000 −2.155± 0.000

Flow −1.465± 0.001 −1.462± 0.001 −1.112± 0.001

6.4.1.2 Half Normal Data

The previous section has shown that variational inference with a normalising

flow-based model is a viable approach for performing extreme deconvolution.

However, it did not demonstrate any actual advantage over the GMM fitted

exactly, as the GMM is able to match the data generation process exactly. In this

section we instead use data generated from a distribution p(z) where we would

expect a flow to do better at density estimation.

To generate synthetic samples of z, we draw each element zid from a half-

normal distribution with zero mean and unit scale and D = 10.

zid ∼ HalfNormal(0, 1). (6.32)

Figure 6.2a shows a corner plot of the first two dimensions of z drawn

using this scheme, showing the hard cut-off at zero. GMMs often struggle

when trying to fit hard cut-offs in a distribution, requiring the number of

components to increase exponentially with the number of dimensions. By

contrast normalising flows do a better job of fitting to hard cut-offs. In many

problems a restricted support would best be dealt with by reparametrising the

underlying model. However for the exact GMM approach this is not an option,

as any reparametrisation of either z or x removes the ability to evaluate the

marginal log-likelihood log p(x) analytically by removing the requirement for

the prior to be a GMM and the noise to be Gaussian.

We use the same noise-scheme as in Section 6.4.1.1, and figure 6.2b shows

Chapter 6. Extreme Deconvolution with Variational Inference 137

Table 6.2: Per-datapoint average validation log-likelihoods for the synthetic

data experiment using a 10D half-normal distribution. Error bars indicate the

standard deviation across five independent runs. The flows are significantly

better at modelling the observed noisy data, and correspondingly do a better

job of modelling the latent noise-free data.

ELBO log p(x) log p(z)

GMM (Exact) – −8.484± 0.004 −8.122± 0.004

GMM (VI, Exact) −8.464± 0.001 −8.449± 0.001 −8.010± 0.001

GMM (VI, Flow) −8.464± 0.004 −8.447± 0.003 −8.003± 0.001

Flow −8.182± 0.001 −8.169± 0.001 −7.506± 0.001

the same samples with the noise added to produce x. The noise makes it hard

to determine exactly where the cut-off lies.

We compare the ability of a GMM and a flow-based model to fit the data

using the same experimental setup as before in Section 6.4.1.1. We set the

number of components for the comparison GMM to K = 128. As well as

fitting the GMM using the exact marginal log-likelihood, we also fit it using

variational inference using the exact posterior as before, and also with the

flow-based posterior on its own. Appendix B.1 contains full experimental

details.

Table 6.2 shows the validation log-likelihoods averaged over datapoints

for both x and z, as well as the ELBO for the models fitted with variational

inference. The flow-based model is clearly better at fitting the underlying

density, with much larger values for both the marginal log-likelihood and the

latent likelihood compared to the GMM based models. In this case, fitting

the GMM with variational inference actually results in slightly better values

compared to fitting it exactly, so it could be that the additional noise in the

gradient estimates can help avoid local maxima in some cases.

Figures 6.3a and 6.3b show samples from the fitted prior for the exact GMM

and flow-based model respectively. We can see in Figure 6.3b that the flow-

based model has done a better job of identifying the hard cut-off below zero. In

Figure 6.3a the GMM can be seen to leak more probability mass below zero.

Chapter 6. Extreme Deconvolution with Variational Inference 138

1.5 0.0 1.5 3.0 4.5

z1

1.5
0.0
1.5
3.0
4.5

z 2

1.5 0.0 1.5 3.0 4.5

z2

(a) Corner plot of latent z samples from the two component Half-Normal problem.

1.5 0.0 1.5 3.0 4.5

x1

1.5
0.0
1.5
3.0
4.5

x 2

1.5 0.0 1.5 3.0 4.5

x2

(b) Corner plot of noisy observed x samples from the Half-Normal problem.

Figure 6.2: The first two dimensions of latent noise-free and observed noisy

training samples from the Half-Normal problem. The noise makes it harder to

identify exactly where the hard cut-off lies, indicated by the blue dashed line.

Chapter 6. Extreme Deconvolution with Variational Inference 139

1.5 0.0 1.5 3.0 4.5

z1

1.5
0.0
1.5
3.0
4.5

z 2

1.5 0.0 1.5 3.0 4.5

z2

(a) Corner plot of latent z samples from the fitted GMM prior.

1.5 0.0 1.5 3.0 4.5

z1

1.5
0.0
1.5
3.0
4.5

z 2

1.5 0.0 1.5 3.0 4.5

z2

(b) Corner plot of latent z samples from the fitted flow prior.

Figure 6.3: Samples from the GMM and flow priors fitted to the Half-Normal

data problem from Section 6.4.1.2. The flow is clearly better at capturing the

hard cut-offs (indicated by the blue dashed lines) compared to the GMM.

Chapter 6. Extreme Deconvolution with Variational Inference 140

6.4.1.3 Non-Gaussian Noise

As a final synthetic experiment, we try fitting the underlying Half Normal

data from Section 6.4.1.2, but with Laplacian instead of Gaussian noise, using a

randomly generated scale,

sid ∼ LogNormal(0, 1), d ∈ {0, 1} (6.33)

ϵid ∼ Laplace(0, ηsid), (6.34)

where η is again a noise-scale factor we set to 0.1 as before.

As the noise is now non-Gaussian, we cannot fit a GMM to the data by exact

fitting of the marginal log-likelihood or by variational inference using the exact

posterior, as the posterior is now intractable. We are therefore restricted to using

the GMM fitted with variational inference and a flow-posterior, and the fully

flow-based model, using the same experimental setup as in Section 6.4.1.2.

Table 6.3 shows the validation ELBO and log-likelihoods averaged over

datapoints for both x and z. Again the flow-based prior does a better job than

the GMM in terms of both log p(x) and log p(z), and the results for log p(z) are

fairly close to those in Table 6.2. This demonstrates that our approach can work

just as well with non-Gaussian noise as Gaussian noise.

Table 6.3: Per-datapoint average validation log-likelihoods for the synthetic

data experiment using non-Gaussian noise. Error bars indicate the standard

deviation across five independent runs. As with the previous experiments using

Gaussian noise, the flows are better at modelling the hard cut-off in the latent

data.

ELBO log p(x) log p(z)

GMM (VI, Flow) −10.277± 0.066 −10.214± 0.064 −8.119± 0.023

Flow −9.861± 0.009 −9.809± 0.009 −7.585± 0.001

6.4.2 Astrometric Gaia Data

Having shown with the synthetic data experiments that normalising flows

fitted with variational inference can do a better job of deconvolving noisy data

if the flow is able to fit the underlying noise-free density better, we now try

Chapter 6. Extreme Deconvolution with Variational Inference 141

Table 6.4: Per-datapoint average validation results for the synthetic data ex-

periment using the astrometric Gaia dataset. The GMM is slightly better at

modelling the noisy data than the flow.

ELBO log p(x)

GMM – −15.942± 0.001

Flow −16.053± 0.027 −16.029± 0.023

our approach on real data. We reuse the Gaia dataset from Chapter 5. The

dataset consists of two million samples from the Gaia Data Release 3 (DR3)

catalogue (The Gaia Collaboration 2022). Each sample consist of five measure-

ments of a particular star’s position and movements, referred to as astrometric

measurements, and has a full-covariance Gaussian noise level associated with

it. We follow Anderson et al. (2018) in assuming that the noise covariances are

independent of the latent noise free values even though this is not strictly true,

noting that it may bias our results as discussed in Section 5.4.3.2.

We fit a GMM using the exact optimisation method as in the synthetic

experiments, with K = 128 components. We use the same flow setup as for the

synthetic experiments, but with modified hyperparameters. Full experimental

details are provided in Appendix B.2.

Table 6.4 reports the validation log-likelihoods averaged over datapoints for

x, as well as the ELBO for the flow-based model. As the noise-free values of z

underlying the measurements are not available in this case, we cannot report

log p(z). The GMM has a slightly better result than the flow, suggesting that the

limited dimensionality of the dataset and the relatively smoothness of the data

prevents the flow from gaining much of an advantage.

Figures 6.4 and 6.5 show samples from the fitted prior from the GMM

and flow respectively. Both appear fairly similar. Looking at the density plot

showing the marginal distribution of the first and second dimensions, we can

see that both have recovered the characteristic structure of the Milky Way.

Figure 6.6 shows histograms showing the marginal distribution of the par-

allax samples ω (corresponding to the third dimension) from the dataset and

samples from both the GMM and flow. The parallax samples are typically

the noisiest measurement in the training dataset, and should theoretically be

constrained to be greater than zero. In practice the dataset contains negative

Chapter 6. Extreme Deconvolution with Variational Inference 142

80
40
0

40
80

z 2

0
1
2
3
4

z 3

20
10
0

10
20

z 4

80 16
0

24
0

32
0

z1

24
16
8
0
8

z 5

80 40 0 40 80
z2

0 1 2 3 4
z3

20 10 0 10 20
z4

24 16 8 0 8
z5

Figure 6.4: Corner plot of latent z samples from the GMM prior fitted to the

noisy Gaia data by direct optimisation of the marginal likelihood.

parallax values as a result of systematic errors, and the noise model is not strictly

Gaussian for some of them (Babusiaux, Fabricius, et al. 2022). Both models

have shrunk the distribution compared to the dataset, suggesting that they are

actually denoising the data. In particular, both have reduced the weight of the

left tail corresponding to non-physical parallax values, with the GMM doing so

more than the flow.

Chapter 6. Extreme Deconvolution with Variational Inference 143

80
40
0

40
80

z 2

0
1
2
3
4

z 3

20
10
0

10
20

z 4

80 16
0

24
0

32
0

z1

24
16
8
0
8

z 5

80 40 0 40 80
z2

0 1 2 3 4
z3

20 10 0 10 20
z4

24 16 8 0 8
z5

Figure 6.5: Corner plot of latent z samples from the flow prior fitted to the noisy

Gaia data using variational inference. It appears very similar to the samples

from the GMM plotted in Figure 6.4.

Chapter 6. Extreme Deconvolution with Variational Inference 144

4 2 0 2 4
Parallax (mas)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

p(
)

Data
GMM
Flow

10 5 0 5 10 15 20
Distance d (kpc)

0.00

0.05

0.10

0.15

0.20

0.25

p(
d)

Data
GMM
Flow

Figure 6.6: Histograms showing estimated marginal distribution of the parallax

samples from the Gaia data and both priors fitted to the data. The top row shows

a histogram of parallax values, whilst the bottom row shows the same data

but inverted, equivalent to distance. Both models have shrunk the distribution

as a result of the denoising, especially on the left tail where the parallax has

non-physical negative values.

Chapter 6. Extreme Deconvolution with Variational Inference 145

6.4.3 Astrometric and Photometric Gaia Data

We now extend our experiments on the Gaia data to include photometric

measurements. We take the dataset from Section 6.4.2 and add three dimensions

corresponding to photometric measurements of each source. Each photometric

measurement indicates the brightness of the star over a particular range of

photon wavelengths (referred to as a passband), and are originally measured in

terms of photon flux at the observing sensor (Riello et al. 2021).

As the flux measurements cover a very large range, it is typically to work

with them on a log-scale. In astronomy, a magnitude scale is used where the

apparent magnitude of a source m is defined as

m = t(f), (6.35)

= −2.5 log10(f) + ZP, (6.36)

where f is the observed flux at the sensor and ZP is an offset such that a

reference source (typically the star Vega) has zero magnitude (Chapter 17,

Fraknoi, Morrison, and Wolff 2016; Riello et al. 2021). Subscripts are used to

indicate the passband each magnitude and flux correspond to, e.g. mG and

fG respectively indicate the apparent magnitude and flux in the G-band. The

corresponding inverse transformation from magnitude to flux is

f = t−1(m), (6.37)

= f010
− 2m

5 , (6.38)

where f0 is the flux of the reference source.

A natural question is whether we should try to do density estimation in the

flux or magnitude space. The noise statistics on the photometric measurements

are Gaussian in the flux space, and therefore non-Gaussian in magnitude space.

Therefore fitting a GMM with exact likelihood evaluation is restricted to the

flux space, as it can only work with Gaussian noise. A flow or GMM fitted

with variational inference can work with either space in theory. The noise

distribution in magnitude space can be evaluated by performing a change-of-

variables on the noise distribution in flux space,

p(x | z, S) = N (t−1(x) | t−1(z), S) ·
∣∣∣∣ ddxt−1(x)

∣∣∣∣ . (6.39)

Chapter 6. Extreme Deconvolution with Variational Inference 146

Table 6.5: Per-datapoint average validation log-likelihoods for the experiment

using the astrometric and photometric Gaia dataset. The flow does a better job

of modelling the data than the GMM.

ELBO log p(x)

GMM – −33.622± 0.074

Flow −32.758± 0.014 −32.737± 0.013

Whilst in theory this can be evaluated as part of our objective function, in prac-

tice it results in an unstable fitting procedure, as even reasonable-valued sam-

ples from the approximate posterior can result in an overflow when performing

the inverse transformation given by Equation 6.38 due to the exponentiation.

As a result we perform density estimation in flux space, which also allows

us to directly compare a flow fitted with variational inference to a GMM fit-

ted using the exact marginal likelihood. We use the same setups as in the

experiments in Section 6.4.2, but with the number of components of the GMM

increased to K = 256. Full experimental details are available in Appendix B.2.

Table 6.5 reports the validation log-likelihoods averaged over datapoints for

x, as well as the ELBO for the flow-based model. This time the flow produces

better log-likelihood values than the GMM, which validates our assumption

that flows could be better for some datasets. As log-likelihood values are in

themselves not inherently interesting, we now consider two example appli-

cations for the flow-based model using our fitted prior and our approximate

posterior respectively. We use these applications to validate that the flow-based

model is behaving reasonably.

6.4.3.1 Colour Magnitude Diagram

An interesting application of the prior is to use it to plot a colour-magnitude

diagram (CMD, Chapter 18, Fraknoi, Morrison, and Wolff 2016; Babusiaux,

van Leeuwen, et al. 2018). There is a strong relationship between the colour of a

star and its absolute magnitude. The absolute magnitude of a star is defined

as being equivalent to the apparent magnitude if the star was observed at a

distance of 10 parsecs, corresponding to a parallax of 100 milliarcseconds. The

absolute magnitude M can be computed from an observed apparent magnitude

Chapter 6. Extreme Deconvolution with Variational Inference 147

m if the parallax ω is known via the relationship

M = m+ 5 log10(ω)− 10, (6.40)

with ω having units of milliarcseconds (Babusiaux, van Leeuwen, et al. 2018).

The absolute magnitude is strongly dependent on the distance d computed

from the parallax.

The colour is defined as the difference between magnitudes in different

passbands, or equivalently the logarithm of the ratio of fluxes in different

passbands. A typical colour used with the photometric data from the Gaia

catalogue is the difference between apparent magnitudes from the BP and RP

passbands (Babusiaux, van Leeuwen, et al. 2018),

GBP −GRP = mGBP
−mGRP

(6.41)

Colour does not strongly depend on distance. If we were to compute the colour

using absolute magnitudes M instead of apparent magnitudes m, the result

would be the same because the distance correction terms from Equation 6.40

would cancel out.

If we know the relationship between colour and absolute magnitude via a

CMD, then we can infer the distance to stars for which we do not have parallax

measurements by inferring the absolute magnitude from the observed colour.

We can then compare the inferred absolute magnitude to the observed apparent

magnitude to derive the distance (Chapter 19, Fraknoi, Morrison, and Wolff

2016). Construction of a CMD can be done directly from observed data such

as the Gaia catalogue, but if the measurements are noisy we risk producing an

inaccurate CMD.

Instead, we use samples from our fitted prior p(z) to construct a CMD,

which allows us to correct for the noisy observations, and compare it to a CMD

constructed directly from the observed data. In order to construct the diagrams

from both prior and data samples, we need to correct the apparent magnitudes

and colours to account for interstellar dust between the star and telescope,

which has the effect of diminishing the apparent magnitude and biasing the

colour to the red end of the spectrum. We use the Bayestar 2017 dustmap (Green,

Schlafly, Finkbeiner, et al. 2018), which takes the 3D position of each sample as

an input, and use the median output as a correction factor.1 We then use the

1There is a newer version of the Bayestar dustmap (Green, Schlafly, Zucker, et al. 2019), but

Chapter 6. Extreme Deconvolution with Variational Inference 148

values derived by Cranmer, Galvez, et al. (2019) to convert this correction factor

into factors for each Gaia passband.2

Figure 6.7 shows a normalised 2D histogram of samples from both the prior

and data after dust correction, along with the marginalised histograms over

colour and magnitude, making the latter a number count plot. We can see that

the colour values are not significantly changed by the deconvolution process,

as the colour measurements in this dataset typically have small noise values.

The magnitude values have changed, as they depend strongly on the parallax

measurements which can be noisy.

6.4.3.2 M67 Distance Estimates

To demonstrate an example application of our approximate posterior, we follow

one of the examples from Anderson et al. 2018 and denoise the noisy measure-

ments of stars in the M67 cluster to improve parallax measurements. Accurate

distance estimates using other methods have been made, allowing it to serve as

a useful test-case (Yakut et al. 2009).

We selected all sources in the DR3 catalogue within a 0.3 degree radius of

the point with right-ascension of 132.8◦ and a declination of 11.8◦. We do not

filter on the absolute parallax, so our selection will include stars outside of the

cluster. However, as successive data releases from Gaia have improved the

noise on the parallax measurements substantially, we filter to include only stars

with a signal-to-noise ratio of less than 15, in order to make the problem more

challenging. This results in a dataset with 1479 samples.

We input each data sample to our approximate posterior and draw 1000 sam-

ples from it. We also draw 1000 samples from the noise distribution defined by

the data sample. Figure 6.8 shows a histogram of the distance (inverse parallax)

combined over all samples for both posterior and data, along with an indication

of the previous distance estimate. We can see that the posterior samples have

tightened the estimate towards the previous measurements compared to the

noisy data. Whilst not an exact check on correctness, this validates that our

approximate posterior is behaving reasonably. The posterior has also slightly

it makes use of parallaxes from the Gaia catalogue, so to avoid inadvertent double use of the
data we only use the earlier version.

2Strictly speaking Cranmer, Galvez, et al. (2019) derived conversion values for the Gaia Data
Release 2 passbands, which are slightly different from those in the Gaia DR3 catalogue which
we used to fit our model, but are close enough for our purposes.

Chapter 6. Extreme Deconvolution with Variational Inference 149

0 2 4
GBP GRP

5

0

5

10

15

M
G

Data

0 2 4
GBP GRP

5

0

5

10

15

Prior

2 0 2 4 6
GBP GRP

0.0

0.2

0.4

0.6

0.8

1.0

p(
G

BP
G

RP
)

5051015
MG

0.000

0.025

0.050

0.075

0.100

0.125

p(
M

G
)

0.0

0.1

0.2

0.3

p(
M

G
,G

BP
G

RP
)

Data
Prior

Figure 6.7: Top row: Colour Magnitude Diagrams constructed as 2D histograms

directly from the noisy data and from samples from the fitted prior. Bottom

row: The same samples marginalised over colour and magnitude respectively.

The deconvolution process has not significantly affected the colour, as those

measurements had small noise values. The magnitude values have changed,

as they depend on noisy parallax measurements.

Chapter 6. Extreme Deconvolution with Variational Inference 150

0 1 2 3 4 5
Distance d (kpc)

0.0

0.2

0.4

0.6

0.8

1.0

p(
d)

External Estimate
Data
Posterior

Figure 6.8: Histogram of distances to stars in the M67 cluster, using samples di-

rectly from the data, and denoised samples from the approximate flow posterior.

The shaded region indicates previous estimates of the distance to M67. The

posterior clearly tightens up the Gaia estimate towards the external estimate.

increased the distance estimates for background stars which are not part of the

cluster, indicated in the right tail.

6.5 Discussion

Our experiments have shown that our approach to extreme deconvolution

using normalizing flows with variational inference is viable. Whilst flow-

based approaches do not show an across-the-board improvement compared to

GMMs on the tasks we have evaluated them on, they do show better modelling

performance for sufficiently complex underlying distributions. We have also

demonstrated that using variational inference allows us to work with non-

Gaussian noise, something a GMM fitted by exact optimisation of the marginal

likelihood cannot do.

One downside of using normalising flows is that we have introduced a large

number of free hyperparameters that the user needs to select. The particular

parameters we chose are detailed in Appendix B. A more rigorous approach

would be to select the hyperparameters through a cross-validation scheme.

However, as we noted in Section 5.4.3.1, an overparameterised model can be

Chapter 6. Extreme Deconvolution with Variational Inference 151

hard to detect purely through the log marginal-likelihood, which could lead to

suboptimal density estimates.

We have quantitatively compared the GMM and flow-based approaches in

terms of log-marginal likelihood. Another interesting aspect to the compare

them on would be computational cost. Unfortunately, it is difficult to draw

strong conclusions about this from our experiments as our approaches have

substantially different implementations. Computational cost of the GMM is

dominated by the cost of performing N ×K Cholesky decompositions at each

training step where N is the size of each minibatch and K is the number of mix-

ture components. For the flow-based models, computation time is mainly spent

running the neural networks inside the flow transformations. Any compari-

son would be heavily dependent on how well the underlying operations have

been optimised. However, a rough estimate from the photometric experiment

suggests that our implementation of the flow-based approach is approximately

three times faster to train compared to our GMM implementation.

6.5.1 Related Work

Our setup using variational inference and an amortized posterior looks similar

to that of the variational auto-encoder (VAE), and was indeed partly inspired

by it (Kingma and Welling 2013). A key difference is that a VAE is primarily

intended for generative modelling, with learnable parameters as part of the

likelihood, and the latent space used as an encoding to help achieve this. By

contrast in our setup, we have no learnable parameters in the likelihood, and

we construct our latent space to be a noise-free representation of the data. Our

prior and likelihood (noise) are distributions over the same space, whereas for

the VAE the latent space is typically of a much lower dimensionality than the

data. The original implementation of the VAE used a fixed prior, but other work

has expanded on this with more flexible learnable priors including normalizing

flows (Nalisnick, Hertel, and Smyth 2016; Dilokthanakul et al. 2017; Chen et al.

2017).

Anderson et al. 2018 used the existing GMM implementation to fit a CMD

using astrometric data from the Gaia DR1 catalogue and photometric data from

the 2MASS catalogue (Skrutskie et al. 2006), with the intention of producing a

CMD solely from data without making any physical modelling assumptions.

Chapter 6. Extreme Deconvolution with Variational Inference 152

They fit the GMM to a transformation of the CMD in order to ensure the

noise was Gaussian distributed, a requirement for the GMM implementation.

This approach is not entirely physics-free, as they use current estimates of the

parallax inside the training loop to look up dereddening values from a dustmap

and correct absolute magnitudes and colours. This also adds potential for bias

when fitting the model.

In contrast our approach does not use a dustmap when fitting our model,

instead using it only at the end when producing a CMD as a transformation

of the features our density estimator is fitted to. We cannot make a direct

comparison between our results and theirs, as we use different datasets and

modelling approaches, and they do not provide marginal-log likelihood val-

ues, but we do draw similar conclusions from the example applications. Our

CMD is different to theirs as we use different photometric catalogues, but both

approaches generally show a tightened CMD compared to one constructed

directly from the data. Both M67 distance estimates tighten the noisy estimates

towards the externally-determined value. If we were to drop a normalising

flow directly into their modelling setup in place of the GMM it may not result

in much improvement, as their GMM is only providing density estimates in

two dimensions on a distribution which appears to be smooth.

As previously mentioned the paper by Cranmer, Galvez, et al. (2019) reports

the first attempt we are aware of fitting a denoised CMD using a normalizing

flow. The model is not formally set up as a deconvolution problem, instead

using a heuristic weighting scheme to fit a normalising flow directly to the noisy

data. The flow models the CMD directly as a prior, and like Anderson et al. 2018

made use of a dustmap inside the training loop to deredden samples during

the fitting process. The paper did not explicitly state how to draw samples from

the posterior, although MCMC methods could be used with minimal further

assumptions. This approach is hard to compare directly with ours without log-

marginal likelihood values, but it also appears to produce a plausible-looking

CMD and lower variance estimates of the distance to M67, demonstrating the

potential value of normalising flows for this application.

Chapter 7

Conclusion

It is clear that there is still work to be done in meeting the goal of “abstracting

away the mechanics of inference and providing self-tuning methods and diag-

nostics” stated in the introduction. To make inference on the pileup problem

possible with Markov chain Monte Carlo (MCMC) methods, we needed to

manually derive an exact marginalisation scheme in order to make our chosen

MCMC method work. The neural simulation-based inference (SBI) methods

we considered are more able to treat the model as black box, but are still not

perfect. The SBI methods have many free parameters for the user to choose,

and it is not obvious how we should be guided when selecting them. They also

lack self-diagnostics which make it hard to be sure they are correct even if they

run without errors.

We highlighted potential issues that might be encountered when fitting mod-

els with the extreme deconvolution method. We noted that the log marginal-

likelihood could be misleading when judging a fitted model’s performance,

with no straightforward way to detect when this was happening. We also

showed that the deconvolution method will produce incorrect results if the

assumption of noise statistics being independent of the latent-noise free value

is violated. The use of normalising flows in-place of Gaussian mixture models

(GMMs) results in a large increase in the number of free hyperparameters the

user is required to tune.

Even with these issues remaining, we have still made progress in tackling

the problems we set out to solve. We have shown that it is possible to do

Bayesian inference with spectral models involving pileup, and that both the

MCMC and SBI methods we have proposed can be well-calibrated. The SBI

153

Chapter 7. Conclusion 154

methods also have the advantage of being able to scale to larger problems,

and by applying the potential scale reduction factor diagnostic to them we can

detect some problems without having to resort to expensive calibration checks.

By leveraging techniques for fitting large-scale machine learning models,

we can make it practical to use the extreme deconvolution method with the

extremely large catalogues of data produced by the Gaia mission. Adapting

advances in variational inference and density estimation allowed us to make

use of normalising flows for density deconvolution, which resulted in better

density estimates for some datasets. Together, these improvements have shown

that advances in statistical methods and probabilistic machine learning can

enable practical Bayesian inference for a wider class of challenging scientific

models.

Bibliography

Aloise, Daniel, Amit Deshpande, Pierre Hansen, and Preyas Popat (May 1,

2009). “NP-hardness of Euclidean Sum-of-Squares Clustering”. In: Machine

Learning 75.2, pp. 245–248 (cit. on p. 105).

Anderson, Lauren, David W. Hogg, Boris Leistedt, Adrian M. Price-Whelan,

and Jo Bovy (Sept. 2018). “Improving Gaia Parallax Precision with a Data-

driven Model of Stars”. In: The Astronomical Journal 156.4, p. 145 (cit. on

pp. 100, 120, 141, 148, 151, 152).

Arnaud, Keith, Randall Smith, and Aneta Siemiginowska, eds. (2011). Hand-

book of X-ray Astronomy. Cambridge Observing Handbooks for Research

Astronomers (cit. on p. 51).

Babusiaux, C., C. Fabricius, S. Khanna, T. Muraveva, C. Reylé, F. Spoto, A.

Vallenari, X. Luri, F. Arenou, M. A. Alvarez, F. Anders, T. Antoja, E. Balbinot,

C. Barache, N. Bauchet, D. Bossini, D. Busonero, T. Cantat-Gaudin, J. M. Car-

rasco, C. Dafonte, S. Diakite, F. Figueras, A. Garcia-Gutierrez, A. Garofalo,

A. Helmi, O. Jimenez-Arranz, C. Jordi, P. Kervella, Z. Kostrzewa-Rutkowska,

N. Leclerc, E. Licata, M. Manteiga, A. Masip, M. Monguio, P. Ramos, N.

Robichon, A. C. Robin, M. Romero-Gomez, A. Saez, R. Santovena, L. Spina,

G. Torralba Elipe, and M. Weiler (June 13, 2022). “Gaia Data Release 3:

Catalogue Validation”. arXiv: 2206.05989 [astro-ph] (cit. on pp. 3,

142).

Babusiaux, C., F. van Leeuwen, et al. (Aug. 1, 2018). “Gaia Data Release 2 -

Observational Hertzsprung-Russell Diagrams”. In: Astronomy & Astrophysics

616, A10 (cit. on pp. 146, 147).

Bailer-Jones, C. A. L., J. Rybizki, M. Fouesneau, M. Demleitner, and R. Andrae

(Feb. 2021). “Estimating Distances from Parallaxes. V. Geometric and Photo-

geometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3”. In:

The Astronomical Journal 161.3, p. 147 (cit. on p. 1).

155

https://arxiv.org/abs/2206.05989

BIBLIOGRAPHY 156

Ballet, J. (Mar. 1, 1999). “Pile-up on X-ray CCD Instruments”. In: Astronomy and

Astrophysics Supplement Series 135.2 (2), pp. 371–381 (cit. on pp. 2, 51).

Barnard, John, Robert McCulloch, and Xiao-Li Meng (2000). “Modeling Co-

variance Matrices in Terms of Standard Deviations and Correlations, with

Application to Shrinkage”. In: Statistica Sinica 10.4, pp. 1281–1311. JSTOR:

24306780 (cit. on p. 123).

Baydin, Atilim Gunes, Barak A. Pearlmutter, Alexey Andreyevich Radul, and

Jeffrey Mark Siskind (2018). “Automatic Differentiation in Machine Learn-

ing: A Survey”. In: Journal of Machine Learning Research 18.153, pp. 1–43

(cit. on pp. 18, 109).

Baydin, Atilim Gunes, Lei Shao, Wahid Bhimji, Lukas Heinrich, Saeid Naderi-

parizi, Andreas Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe,

Lawrence Meadows, Philip Torr, Victor Lee, Kyle Cranmer, Mr. Prabhat,

and Frank Wood (2019). “Efficient Probabilistic Inference in the Quest for

Physics Beyond the Standard Model”. In: Advances in Neural Information

Processing Systems. Vol. 32 (cit. on p. 29).

Betancourt, Michael (Apr. 3, 2016a). Diagnosing Suboptimal Cotangent Dis-

integrations in Hamiltonian Monte Carlo. arXiv: 1604.00695 [stat].

URL: http://arxiv.org/abs/1604.00695 (visited on 11/29/2022).

preprint (cit. on p. 64).

— (Jan. 2, 2016b). Identifying the Optimal Integration Time in Hamiltonian Monte

Carlo. arXiv: 1601.00225 [stat]. URL: http://arxiv.org/abs/16

01.00225 (visited on 11/21/2022). preprint (cit. on p. 20).

— (July 15, 2018). A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv:

1701.02434 [stat]. URL: http://arxiv.org/abs/1701.02434

(visited on 11/29/2022). preprint (cit. on pp. 18, 19, 59, 64, 84).

Bingham, Eli, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj

Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall,

and Noah D. Goodman (2019). “Pyro: Deep Universal Probabilistic Pro-

gramming”. In: Journal of Machine Learning Research 20, 28:1–28:6 (cit. on

pp. 1, 20, 53, 62, 70, 73, 109, 173).

Bishop, Christopher M. (1994). “Mixture Density Networks”. Technical Report,

Aston University (cit. on pp. 29, 70).

http://www.jstor.org/stable/24306780
https://arxiv.org/abs/1604.00695
http://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1601.00225
http://arxiv.org/abs/1601.00225
http://arxiv.org/abs/1601.00225
https://arxiv.org/abs/1701.02434
http://arxiv.org/abs/1701.02434

BIBLIOGRAPHY 157

Bottou, Léon, Frank E. Curtis, and Jorge Nocedal (Jan. 2018). “Optimization

Methods for Large-Scale Machine Learning”. In: SIAM Review 60.2, pp. 223–

311 (cit. on pp. 3, 101, 108).

Bovy, Jo, David W. Hogg, and Sam T. Roweis (June 2011). “Extreme Deconvolu-

tion: Inferring Complete Distribution Functions from Noisy, Heterogeneous

and Incomplete Observations”. In: The Annals of Applied Statistics 5 (2B),

pp. 1657–1677 (cit. on pp. 3, 100, 104, 105, 107, 109, 110, 122, 125, 171).

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,

Skye Wanderman-Milne, and Qiao Zhang (2018). JAX: Composable Transfor-

mations of Python+NumPy Programs. Version 0.2.5 (cit. on p. 62).

Brooks, Stephen P. and Andrew Gelman (Dec. 1, 1998). “General Methods for

Monitoring Convergence of Iterative Simulations”. In: Journal of Computa-

tional and Graphical Statistics 7.4, pp. 434–455 (cit. on p. 22).

Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (Nov. 7, 2016). Importance

Weighted Autoencoders. arXiv: 1509.00519 [cs, stat]. URL: http:

//arxiv.org/abs/1509.00519 (visited on 11/29/2022). preprint (cit.

on p. 132).

Burnett, Richard, Hong Chen, Mieczysław Szyszkowicz, Neal Fann, Bryan

Hubbell, C. Arden Pope, Joshua S. Apte, Michael Brauer, Aaron Cohen, Scott

Weichenthal, Jay Coggins, Qian Di, Bert Brunekreef, Joseph Frostad, Stephen

S. Lim, Haidong Kan, Katherine D. Walker, George D. Thurston, Richard B.

Hayes, Chris C. Lim, Michelle C. Turner, Michael Jerrett, Daniel Krewski,

Susan M. Gapstur, W. Ryan Diver, Bart Ostro, Debbie Goldberg, Daniel

L. Crouse, Randall V. Martin, Paul Peters, Lauren Pinault, Michael Tjep-

kema, Aaron van Donkelaar, Paul J. Villeneuve, Anthony B. Miller, Peng Yin,

Maigeng Zhou, Lijun Wang, Nicole A. H. Janssen, Marten Marra, Richard W.

Atkinson, Hilda Tsang, Thuan Quoc Thach, John B. Cannon, Ryan T. Allen,

Jaime E. Hart, Francine Laden, Giulia Cesaroni, Francesco Forastiere, Gu-

drun Weinmayr, Andrea Jaensch, Gabriele Nagel, Hans Concin, and Joseph

V. Spadaro (Sept. 18, 2018). “Global Estimates of Mortality Associated with

Long-Term Exposure to Outdoor Fine Particulate Matter”. In: Proceedings of

the National Academy of Sciences 115.38, pp. 9592–9597 (cit. on p. 1).

https://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1509.00519

BIBLIOGRAPHY 158

Cappé, Olivier and Eric Moulines (2009). “On-Line Expectation–Maximization

Algorithm for Latent Data Models”. In: Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 71.3, pp. 593–613 (cit. on p. 106).

Carlin, Bradley P. and Thomas A. Louis (Dec. 1, 2000). “Empirical Bayes: Past,

Present and Future”. In: Journal of the American Statistical Association 95.452,

pp. 1286–1289 (cit. on p. 102).

Carpenter, Bob, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben

Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,

and Allen Riddell (Jan. 11, 2017). “Stan: A Probabilistic Programming

Language”. In: Journal of Statistical Software 76, pp. 1–32 (cit. on pp. 1, 53).

Chandra X-ray Science Center (July 18, 2010). The Chandra ABC Guide to Pileup.

URL: https://cxc.harvard.edu/ciao/download/doc/pileup_a

bc.pdf (visited on 08/22/2023) (cit. on p. 51).

Chen, Xi, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John

Schulman, Ilya Sutskever, and Pieter Abbeel (Mar. 4, 2017). Variational Lossy

Autoencoder. arXiv: 1611.02731 [cs, stat]. URL: http://arxiv.or

g/abs/1611.02731 (visited on 10/06/2022). preprint (cit. on p. 151).

Cragg, John G. (1971). “Some Statistical Models for Limited Dependent Vari-

ables with Application to the Demand for Durable Goods”. In: Econometrica

39.5, pp. 829–844. JSTOR: 1909582 (cit. on p. 94).

Cranmer, Kyle, Johann Brehmer, and Gilles Louppe (Dec. 1, 2020). “The Frontier

of Simulation-Based Inference”. In: Proceedings of the National Academy of

Sciences 117.48, pp. 30055–30062 (cit. on pp. 30, 53).

Cranmer, Miles D., Richard Galvez, Lauren Anderson, David N. Spergel, and

Shirley Ho (Aug. 21, 2019). “Modeling the Gaia Color-Magnitude Diagram

with Bayesian Neural Flows to Constrain Distance Estimates”. arXiv: 1908

.08045 [astro-ph, stat] (cit. on pp. 124, 148, 152).

Davis, John E. (Nov. 2001). “Event Pileup in Charge-coupled Devices”. In: The

Astrophysical Journal 562.1, pp. 575–582 (cit. on pp. 52, 80, 82, 83).

Deason, Alis J, Vasily Belokurov, and Jason L Sanders (Dec. 11, 2019). “The

Total Stellar Halo Mass of the Milky Way”. In: Monthly Notices of the Royal

Astronomical Society 490.3, pp. 3426–3439 (cit. on p. 100).

https://cxc.harvard.edu/ciao/download/doc/pileup_abc.pdf
https://cxc.harvard.edu/ciao/download/doc/pileup_abc.pdf
https://arxiv.org/abs/1611.02731
http://arxiv.org/abs/1611.02731
http://arxiv.org/abs/1611.02731
http://www.jstor.org/stable/1909582
https://arxiv.org/abs/1908.08045
https://arxiv.org/abs/1908.08045

BIBLIOGRAPHY 159

Dempster, A. P., N. M. Laird, and Donald B. Rubin (1977). “Maximum Likeli-

hood from Incomplete Data via the EM Algorithm”. In: Journal of the Royal

Statistical Society. Series B (Methodological) 39.1, pp. 1–38. JSTOR: 2984875

(cit. on p. 102).

Dilokthanakul, Nat, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee,

Hugh Salimbeni, Kai Arulkumaran, and Murray Shanahan (Jan. 13, 2017).

Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders.

Version 2. arXiv: 1611.02648 [cs, stat]. URL: http://arxiv.org/

abs/1611.02648 (visited on 10/06/2022). preprint (cit. on p. 151).

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (Feb. 27, 2017). Density

Estimation Using Real NVP. arXiv: 1605.08803 [cs, stat]. URL: http:

//arxiv.org/abs/1605.08803 (visited on 11/22/2022). preprint (cit.

on p. 27).

Dockhorn, Tim, James A. Ritchie, Yaoliang Yu, and Iain Murray (July 13, 2020).

“Density Deconvolution with Normalizing Flows”. arXiv: 2006.09396

[cs, stat] (cit. on pp. 5, 128).

Drineas, P., A. Frieze, R. Kannan, S. Vempala, and V. Vinay (July 1, 2004). “Clus-

tering Large Graphs via the Singular Value Decomposition”. In: Machine

Learning 56.1, pp. 9–33 (cit. on p. 105).

Duane, Simon, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth (Sept. 3,

1987). “Hybrid Monte Carlo”. In: Physics Letters B 195.2, pp. 216–222 (cit. on

pp. 2, 18, 44, 50, 59).

Durkan, Conor, Artur Bekasov, Iain Murray, and George Papamakarios (2019).

“Neural Spline Flows”. In: Advances in Neural Information Processing Systems.

Vol. 32 (cit. on pp. 27, 133, 173).

Durkan, Conor, Iain Murray, and George Papamakarios (Nov. 21, 2020). “On

Contrastive Learning for Likelihood-free Inference”. In: Proceedings of the

37th International Conference on Machine Learning, pp. 2771–2781 (cit. on pp. 36,

72).

Fang, Taotao, Herman L. Marshall, Greg L. Bryan, and Claude R. Canizares

(July 1, 2001). “Chandra Observations of Two High-Redshift Quasars”. In:

The Astrophysical Journal 555.1, p. 356 (cit. on p. 83).

Foreman-Mackey, Daniel (June 8, 2016). “Corner.Py: Scatterplot Matrices in

Python”. In: Journal of Open Source Software 1.2, p. 24 (cit. on p. 17).

http://www.jstor.org/stable/2984875
https://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1611.02648
https://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1605.08803
https://arxiv.org/abs/2006.09396
https://arxiv.org/abs/2006.09396

BIBLIOGRAPHY 160

Foreman-Mackey, Daniel, David W. Hogg, Dustin Lang, and Jonathan Good-

man (Mar. 2013). “Emcee: The MCMC Hammer”. In: Publications of the

Astronomical Society of the Pacific 125.925, pp. 306–312. arXiv: 1202.3665

(cit. on pp. 1, 44).

Fraknoi, Andrew, David Morrison, and Sidney C. Wolff (Oct. 13, 2016). Astron-

omy. OpenStax. 1194 pp. (cit. on pp. 145–147).

Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew

Gelman (2019). “Visualization in Bayesian Workflow”. In: Journal of the Royal

Statistical Society: Series A (Statistics in Society) 182.2, pp. 389–402 (cit. on

pp. 10, 49).

Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari,

and Donald B. Rubin (2014). Bayesian Data Analysis. Third edition. Texts in

Statistical Science Series. 667 pp. (cit. on pp. 9, 10, 13, 15, 21, 22).

Gelman, Andrew and Donald B. Rubin (Nov. 1992). “Inference from Iterative

Simulation Using Multiple Sequences”. In: Statistical Science 7.4, pp. 457–472

(cit. on p. 21).

Gelman, Andrew, Daniel Simpson, and Michael Betancourt (Oct. 2017). “The

Prior Can Often Only Be Understood in the Context of the Likelihood”. In:

Entropy 19.10 (10), p. 555 (cit. on p. 56).

Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Car-

penter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner,

and Martin Modrák (Nov. 3, 2020). Bayesian Workflow. arXiv: 2011.01808

[stat]. URL: http://arxiv.org/abs/2011.01808 (visited on

11/29/2022). preprint (cit. on p. 46).

Gelman, Andrew and Yuling Yao (Jan. 1, 2021). “Holes in Bayesian Statistics”.

In: Journal of Physics G: Nuclear and Particle Physics 48.1, p. 014002. arXiv:

2002.06467 [math, stat] (cit. on p. 56).

Girolami, Mark (Nov. 17, 2008). “Bayesian Inference for Differential Equations”.

In: Theoretical Computer Science. Computational Methods in Systems Biology

408.1, pp. 4–16 (cit. on p. 2).

Goodman, Jonathan and Jonathan Weare (Jan. 31, 2010). “Ensemble Samplers

with Affine Invariance”. In: Communications in Applied Mathematics and

Computational Science 5.1, pp. 65–80 (cit. on p. 44).

https://arxiv.org/abs/1202.3665
https://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2011.01808
http://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2002.06467

BIBLIOGRAPHY 161

Gorinova, Maria I., Andrew D. Gordon, Charles Sutton, and Matthijs Vákár

(Dec. 9, 2021). “Conditional Independence by Typing”. In: ACM Transactions

on Programming Languages and Systems 44.1, 4:1–4:54 (cit. on p. 70).

Graham, Matthew M. and Amos J. Storkey (Jan. 2017). “Asymptotically Exact

Inference in Differentiable Generative Models”. In: Electronic Journal of

Statistics 11.2, pp. 5105–5164 (cit. on p. 29).

Green, Gregory M., Edward Schlafly, Catherine Zucker, Joshua S. Speagle,

and Douglas Finkbeiner (Dec. 2019). “A 3D Dust Map Based on Gaia, Pan-

STARRS 1, and 2MASS”. in: The Astrophysical Journal 887.1, p. 93 (cit. on

p. 147).

Green, Gregory M., Edward F. Schlafly, Douglas Finkbeiner, Hans-Walter Rix,

Nicolas Martin, William Burgett, Peter W. Draper, Heather Flewelling, Klaus

Hodapp, Nicholas Kaiser, Rolf-Peter Kudritzki, Eugene A. Magnier, Nigel

Metcalfe, John L. Tonry, Richard Wainscoat, and Christopher Waters (July 21,

2018). “Galactic Reddening in 3D from Stellar Photometry – an Improved

Map”. In: Monthly Notices of the Royal Astronomical Society 478.1, pp. 651–666

(cit. on p. 147).

Green, Peter J. (Dec. 1, 1995). “Reversible Jump Markov Chain Monte Carlo

Computation and Bayesian Model Determination”. In: Biometrika 82.4,

pp. 711–732 (cit. on p. 57).

Green, Stephen R. and Jonathan Gair (June 2021). “Complete Parameter Infer-

ence for GW150914 Using Deep Learning”. In: Machine Learning: Science and

Technology 2.3, 03LT01 (cit. on p. 97).

Greenberg, David, Marcel Nonnenmacher, and Jakob Macke (May 24, 2019).

“Automatic Posterior Transformation for Likelihood-Free Inference”. In:

Proceedings of the 36th International Conference on Machine Learning, pp. 2404–

2414 (cit. on p. 32).

Griesemer, Dustin, James R. Xue, Steven K. Reilly, Jacob C. Ulirsch, Kalki

Kukreja, Joe R. Davis, Masahiro Kanai, David K. Yang, John C. Butts,

Mehmet H. Guney, Jeremy Luban, Stephen B. Montgomery, Hilary K. Fin-

ucane, Carl D. Novina, Ryan Tewhey, and Pardis C. Sabeti (Sept. 2021).

“Genome-Wide Functional Screen of 3′UTR Variants Uncovers Causal Vari-

ants for Human Disease and Evolution”. In: Cell 184.20, 5247–5260.e19

(cit. on p. 100).

BIBLIOGRAPHY 162

Gubernatis, J. E. (May 2005). “Marshall Rosenbluth and the Metropolis Algo-

rithm”. In: Physics of Plasmas 12.5, p. 057303 (cit. on p. 15).

Hahn, ChangHoon and Peter Melchior (Mar. 14, 2022). “Accelerated Bayesian

SED Modeling Using Amortized Neural Posterior Estimation”. arXiv: 2203

.07391 [astro-ph, stat] (cit. on p. 97).

Hastings, W. K. (Apr. 1, 1970). “Monte Carlo Sampling Methods Using Markov

Chains and Their Applications”. In: Biometrika 57.1, pp. 97–109 (cit. on p. 14).

Hermans, Joeri, Volodimir Begy, and Gilles Louppe (Nov. 21, 2020). “Likelihood-

Free MCMC with Amortized Approximate Ratio Estimators”. In: Proceedings

of the 37th International Conference on Machine Learning, pp. 4239–4248 (cit. on

pp. 35, 72).

Hermans, Joeri, Arnaud Delaunoy, François Rozet, Antoine Wehenkel, and

Gilles Louppe (Oct. 14, 2021). Averting A Crisis In Simulation-Based Inference.

arXiv: 2110.06581 [cs, stat]. URL: http://arxiv.org/abs/21

10.06581 (visited on 11/29/2022). preprint (cit. on p. 95).

Hoffman, Matthew D. and Andrew Gelman (2014). “The No-U-Turn Sampler:

Adaptively Setting Path Lengths in Hamiltonian Monte Carlo”. In: Journal

of Machine Learning Research 15.47, pp. 1593–1623 (cit. on pp. 1, 19, 59).

Huijser, David, Jesse Goodman, and Brendon J. Brewer (2022). “Properties of the

Affine-Invariant Ensemble Sampler’s ‘Stretch Move’ in High Dimensions”.

In: Australian & New Zealand Journal of Statistics 64.1, pp. 1–26 (cit. on p. 44).

Jaynes, E.T. (2003). Probability Theory: The Logic of Science. Ed. by G.L. Bretthorst

(cit. on p. 7).

Jones, D. S., Michael Plank, and B. D. Sleeman (Nov. 12, 2009). Differential

Equations and Mathematical Biology. 2nd ed. 462 pp. (cit. on p. 37).

Jordan, Michael I., Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.

Saul (Nov. 1, 1999). “An Introduction to Variational Methods for Graphical

Models”. In: Machine Learning 37.2, pp. 183–233 (cit. on p. 126).

Jorgensen, Bent (1987). “Exponential Dispersion Models”. In: Journal of the

Royal Statistical Society. Series B (Methodological) 49.2, pp. 127–162. JSTOR:

2345415 (cit. on p. 53).

Kingma, Diederik P. and Jimmy Ba (Dec. 22, 2014). “Adam: A Method for

Stochastic Optimization”. arXiv: 1412.6980 [cs] (cit. on pp. 109, 171–

173).

https://arxiv.org/abs/2203.07391
https://arxiv.org/abs/2203.07391
https://arxiv.org/abs/2110.06581
http://arxiv.org/abs/2110.06581
http://arxiv.org/abs/2110.06581
http://www.jstor.org/stable/2345415
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 163

Kingma, Diederik P. and Prafulla Dhariwal (2018). “Glow: Generative Flow

with Invertible 1x1 Convolutions”. In: Advances in Neural Information Pro-

cessing Systems. Vol. 31 (cit. on pp. 3, 26).

Kingma, Diederik P., Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,

and Max Welling (2016). “Improved Variational Inference with Inverse

Autoregressive Flow”. In: Advances in Neural Information Processing Systems.

Vol. 29 (cit. on pp. 27, 129, 130).

Kingma, Diederik P. and Max Welling (Dec. 20, 2013). “Auto-Encoding Varia-

tional Bayes”. arXiv: 1312.6114 [cs, stat] (cit. on pp. 3, 128, 129, 131,

151).

— (2019). “An Introduction to Variational Autoencoders”. In: Foundations and

Trends® in Machine Learning 12.4, pp. 307–392. arXiv: 1906.02691 (cit. on

p. 126).

Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David

M. Blei (Jan. 1, 2017). “Automatic Differentiation Variational Inference”. In:

The Journal of Machine Learning Research 18.1, pp. 430–474 (cit. on p. 1).

Kumar, Ravin, Colin Carroll, Ari Hartikainen, and Osvaldo Martin (Jan. 15,

2019). “ArviZ a Unified Library for Exploratory Analysis of Bayesian Models

in Python”. In: Journal of Open Source Software 4.33, p. 1143 (cit. on p. 24).

Laplace, Pierre Simon (1774). “Memoir on the Probability of the Causes of

Events”. In: Statistical Science 1.3, pp. 364–378. JSTOR: 2245476 (cit. on

p. 44).

Leimkuhler, Benedict and Sebastian Reich (2004). Simulating Hamiltonian Dy-

namics. 464 pp. (cit. on p. 19).

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe (Oct. 1, 2009). “Gen-

erating Random Correlation Matrices Based on Vines and Extended Onion

Method”. In: Journal of Multivariate Analysis 100.9, pp. 1989–2001 (cit. on

p. 123).

Liang, Percy and Dan Klein (2009). “Online EM for Unsupervised Models”. In:

Proceedings of Human Language Technologies: The 2009 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, p. 611

(cit. on p. 120).

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1906.02691
http://www.jstor.org/stable/2245476

BIBLIOGRAPHY 164

Lintusaari, Jarno, Michael U. Gutmann, Ritabrata Dutta, Samuel Kaski, and

Jukka Corander (Jan. 1, 2017). “Fundamentals and Recent Developments in

Approximate Bayesian Computation”. In: Systematic Biology 66.1, e66–e82

(cit. on p. 30).

Llorente, F., L. Martino, D. Delgado, and J. López-Santiago (Feb. 7, 2023).

“Marginal Likelihood Computation for Model Selection and Hypothesis

Testing: An Extensive Review”. In: SIAM Review 65.1, pp. 3–58 (cit. on p. 12).

Lueckmann, Jan-Matthis, Jan Boelts, David Greenberg, Pedro Goncalves, and

Jakob Macke (Mar. 18, 2021). “Benchmarking Simulation-Based Inference”.

In: Proceedings of The 24th International Conference on Artificial Intelligence and

Statistics. International Conference on Artificial Intelligence and Statistics,

pp. 343–351 (cit. on pp. 38, 53, 74, 98).

Lueckmann, Jan-Matthis, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal,

Marcel Nonnenmacher, and Jakob H Macke (2017). “Flexible Statistical

Inference for Mechanistic Models of Neural Dynamics”. In: Advances in

Neural Information Processing Systems. Vol. 30 (cit. on pp. 2, 32).

Lunn, David J., Andrew Thomas, Nicky Best, and David Spiegelhalter (Oct. 1,

2000). “WinBUGS - A Bayesian Modelling Framework: Concepts, Structure,

and Extensibility”. In: Statistics and Computing 10.4, pp. 325–337 (cit. on p. 1).

MacDonald, Benn (2018). Cside 2018. URL: https://www.gla.ac.uk/scho

ols/mathematicsstatistics/events/conferences/cside2018/

(visited on 12/05/2018) (cit. on pp. 2, 37).

Macdonald, Benn and Dirk Husmeier (2015). “Gradient Matching Methods

for Computational Inference in Mechanistic Models for Systems Biology:

A Review and Comparative Analysis”. In: Frontiers in Bioengineering and

Biotechnology 3 (cit. on pp. 2, 38).

MacKay, David JC (2003). Information Theory, Inference and Learning Algorithms.

628 pp. (cit. on pp. 9, 12–14, 16, 18, 127).

Meager, Rachael (Jan. 2019). “Understanding the Average Impact of Microcredit

Expansions: A Bayesian Hierarchical Analysis of Seven Randomized Exper-

iments”. In: American Economic Journal: Applied Economics 11.1, pp. 57–91

(cit. on p. 1).

Melchior, P. and A. D. Goulding (Oct. 1, 2018). “Filling the Gaps: Gaussian Mix-

ture Models from Noisy, Truncated or Incomplete Samples”. In: Astronomy

and Computing 25, pp. 183–194 (cit. on p. 105).

https://www.gla.ac.uk/schools/mathematicsstatistics/events/conferences/cside2018/
https://www.gla.ac.uk/schools/mathematicsstatistics/events/conferences/cside2018/

BIBLIOGRAPHY 165

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta

H. Teller, and Edward Teller (June 1953). “Equation of State Calculations by

Fast Computing Machines”. In: The Journal of Chemical Physics 21.6, pp. 1087–

1092 (cit. on p. 15).

Mohamed, Shakir, Mihaela Rosca, Michael Figurnov, and Andriy Mnih (2020).

“Monte Carlo Gradient Estimation in Machine Learning”. In: Journal of

Machine Learning Research 21.132, pp. 1–62 (cit. on p. 131).

Moore, R. E., C. Rosato, and S. Maskell (Nov. 8, 2021). “Assessing the Un-

certainty of Epidemiological Forecasts with Normalised Estimation Error

Squared”. arXiv: 2111.04498 [stat] (cit. on p. 53).

Murphy, Kevin P. (Sept. 7, 2012). Machine Learning: A Probabilistic Perspective.

1102 pp. (cit. on pp. 7, 8, 25, 26, 102).

Nadarajah, Saralees, Yuanyuan Zhang, and Tibor K. Pogány (Apr. 2018). “On

Sums of Independent Generalized Pareto Random Variables with Applica-

tions to Insurance and CAT Bonds”. In: Probability in the Engineering and

Informational Sciences 32.2, pp. 296–305 (cit. on p. 55).

Nalisnick, Eric, Lars Hertel, and Padhraic Smyth (2016). “Approximate Infer-

ence for Deep Latent Gaussian Mixtures”. In: Workshop on Bayesian Deep

Learning, NeurIPS 2016, p. 4 (cit. on p. 151).

Neal, Radford M (2011). “MCMC Using Hamiltonian Dynamics”. In: Handbook

of Markov Chain Monte Carlo 2.11, p. 2 (cit. on pp. 2, 18, 19, 44, 50, 59, 80).

Obermeyer, Fritz, Martin Jankowiak, Nikolaos Barkas, Stephen F. Schaffner,

Jesse D. Pyle, Leonid Yurkovetskiy, Matteo Bosso, Daniel J. Park, Mehrtash

Babadi, Bronwyn L. MacInnis, Jeremy Luban, Pardis C. Sabeti, and Jacob E.

Lemieux (June 17, 2022). “Analysis of 6.4 Million SARS-CoV-2 Genomes

Identifies Mutations Associated with Fitness”. In: Science 376.6599, pp. 1327–

1332 (cit. on p. 1).

Papamakarios, George and Iain Murray (2016). “Fast ϵ-Free Inference of Simu-

lation Models with Bayesian Conditional Density Estimation”. In: Advances

in Neural Information Processing Systems 29 (cit. on pp. 31, 32).

Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mo-

hamed, and Balaji Lakshminarayanan (2021). “Normalizing Flows for Prob-

abilistic Modeling and Inference”. In: Journal of Machine Learning Research

22.57, pp. 1–64 (cit. on pp. 3, 26, 28, 70, 124, 129).

https://arxiv.org/abs/2111.04498

BIBLIOGRAPHY 166

Papamakarios, George, Theo Pavlakou, and Iain Murray (2017). “Masked Au-

toregressive Flow for Density Estimation”. In: Advances in Neural Information

Processing Systems. Vol. 30 (cit. on pp. 27, 71, 130, 133, 173).

Papamakarios, George, David Sterratt, and Iain Murray (Apr. 11, 2019). “Se-

quential Neural Likelihood: Fast Likelihood-free Inference with Autoregres-

sive Flows”. In: Proceedings of the Twenty-Second International Conference on

Artificial Intelligence and Statistics, pp. 837–848 (cit. on pp. 33, 71).

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,

Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu

Fang, Junjie Bai, and Soumith Chintala (2019). “PyTorch: An Imperative

Style, High-Performance Deep Learning Library”. In: Advances in Neural

Information Processing Systems. Vol. 32 (cit. on pp. 109, 173).

Perryman, M A C, L Lindegren, J. Kovalevsky, E Høg, U. Bastian, P L Bernacca,

M. Crézé, F Donati, M Grenon, M Grewing, F Van Leeuwen, H Van Der

Marel, F Mignard, C A Murray, R S Le Poole, H Schrijver, C Turon, Frédéric

Arenou, M Froeschlé, and C S Petersen (1997). “The Hipparcos Catalogue”.

In: Astronomy and Astrophysics - A&A 323.1, pp. 49–52 (cit. on pp. 3, 100).

Phan, Du, Neeraj Pradhan, and Martin Jankowiak (2019). “Composable Effects

for Flexible and Accelerated Probabilistic Programming in NumPyro”. arXiv:

1912.11554 (cit. on p. 62).

Powell, M. J. D. (Jan. 1, 1964). “An Efficient Method for Finding the Minimum

of a Function of Several Variables without Calculating Derivatives”. In: The

Computer Journal 7.2, pp. 155–162 (cit. on p. 44).

Revfeim, K. J. A. (Dec. 5, 1984). “An Initial Model of the Relationship between

Rainfall Events and Daily Rainfalls”. In: Journal of Hydrology 75.1, pp. 357–

364 (cit. on p. 52).

Rezende, Danilo Jimenez and Shakir Mohamed (June 1, 2015). “Variational

Inference with Normalizing Flows”. In: Proceedings of the 32nd International

Conference on Machine Learning, pp. 1530–1538 (cit. on pp. 128, 129).

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (June 18, 2014).

“Stochastic Backpropagation and Approximate Inference in Deep Genera-

tive Models”. In: Proceedings of the 31st International Conference on Machine

Learning, pp. 1278–1286 (cit. on pp. 3, 129, 131).

https://arxiv.org/abs/1912.11554

BIBLIOGRAPHY 167

Riello, M., F. De Angeli, D. W. Evans, P. Montegriffo, J. M. Carrasco, G. Busso, L.

Palaversa, P. W. Burgess, C. Diener, M. Davidson, N. Rowell, C. Fabricius, C.

Jordi, M. Bellazzini, E. Pancino, D. L. Harrison, C. Cacciari, F. van Leeuwen,

N. C. Hambly, S. T. Hodgkin, P. J. Osborne, G. Altavilla, M. A. Barstow,

A. G. A. Brown, M. Castellani, S. Cowell, F. De Luise, G. Gilmore, G. Giuf-

frida, S. Hidalgo, G. Holland, S. Marinoni, C. Pagani, A. M. Piersimoni, L.

Pulone, S. Ragaini, M. Rainer, P. J. Richards, N. Sanna, N. A. Walton, M.

Weiler, and A. Yoldas (May 1, 2021). “Gaia Early Data Release 3 - Photomet-

ric Content and Validation”. In: Astronomy & Astrophysics 649, A3 (cit. on

p. 145).

Ritchie, James A. and Iain Murray (Nov. 26, 2019). “Scalable Extreme Deconvo-

lution”. arXiv: 1911.11663 [cs, stat] (cit. on p. 4).

Salvatier, John, Thomas V. Wiecki, and Christopher Fonnesbeck (Apr. 6, 2016).

“Probabilistic Programming in Python Using PyMC3”. In: PeerJ Computer

Science 2, e55 (cit. on pp. 1, 38, 53).

Schubert, Erich and Michael Gertz (2018). “Numerically Stable Parallel Compu-

tation of (Co-)Variance”. In: Proceedings of the 30th International Conference on

Scientific and Statistical Database Management, 10:1–10:12 (cit. on p. 107).

Schwarz, Gideon (Mar. 1978). “Estimating the Dimension of a Model”. In: The

Annals of Statistics 6.2, pp. 461–464 (cit. on p. 118).

Scott, James A., Axel Gandy, Swapnil Mishra, Juliette Unwin, Seth Flaxman,

and Samir Bhatt (2020). Epidemia: Modeling of Epidemics Using Hierarchical

Bayesian Models (cit. on p. 53).

Sculley, D. (2010). “Web-Scale k-Means Clustering”. In: Proceedings of the 19th

International Conference on World Wide Web, p. 1177 (cit. on p. 171).

Shampine, Lawrence F. and Mark W. Reichelt (Jan. 1997). “The MATLAB ODE

Suite”. In: SIAM Journal on Scientific Computing 18.1, pp. 1–22 (cit. on p. 40).

Simitev, R. D. and V. N. Biktashev (Jan. 2011). “Asymptotics of Conduction

Velocity Restitution in Models of Electrical Excitation in the Heart”. In:

Bulletin of Mathematical Biology 73.1, pp. 72–115 (cit. on pp. 2, 37, 39, 41).

Sisson, Scott A., Yanan Fan, and Mark Beaumont (Sept. 3, 2018). Handbook of

Approximate Bayesian Computation. 424 pp. (cit. on p. 30).

https://arxiv.org/abs/1911.11663

BIBLIOGRAPHY 168

Skrutskie, M. F., R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M.

Carpenter, C. Beichman, R. Capps, T. Chester, J. Elias, J. Huchra, J. Liebert,

C. Lonsdale, D. G. Monet, S. Price, P. Seitzer, T. Jarrett, J. D. Kirkpatrick,

J. E. Gizis, E. Howard, T. Evans, J. Fowler, L. Fullmer, R. Hurt, R. Light, E. L.

Kopan, K. A. Marsh, H. L. McCallon, R. Tam, S. Van Dyk, and S. Wheelock

(Feb. 2006). “The Two Micron All Sky Survey (2MASS)”. in: The Astronomical

Journal 131.2, pp. 1163–1183 (cit. on p. 151).

Smyth, Gordon K. and Bent Jørgensen (May 2002). “Fitting Tweedie’s Com-

pound Poisson Model to Insurance Claims Data: Dispersion Modelling”. In:

ASTIN Bulletin: The Journal of the IAA 32.1, pp. 143–157 (cit. on p. 52).

Stan Development Team (2022). Stan Modeling Language Users Guide and Refer-

ence Manual, Version 2.31.0 (cit. on pp. 20, 38, 59–61).

Stigler, Stephen M. (1986). “Laplace’s 1774 Memoir on Inverse Probability”. In:

Statistical Science 1.3, pp. 359–363. JSTOR: 2245475 (cit. on p. 44).

Sugiyama, Masashi, Taiji Suzuki, and Takafumi Kanamori (2012). Density Ratio

Estimation in Machine Learning (cit. on p. 34).

Talts, Sean, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew

Gelman (Oct. 21, 2020). “Validating Bayesian Inference Algorithms with

Simulation-Based Calibration”. arXiv: 1804.06788 [stat] (cit. on pp. 24,

49, 50, 67).

Tejero-Cantero, Alvaro, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann,

Conor Durkan, Pedro J. Gonçalves, David S. Greenberg, and Jakob H. Macke

(2020). “SBI: A Toolkit for Simulation-Based Inference”. In: Journal of Open

Source Software 5.52, p. 2505 (cit. on pp. 36, 73, 96).

Teller, Edward and Judith Schoolery (Sept. 9, 2009). Memoirs: A Twentieth

Century Journey In Science And Politics. 678 pp. (cit. on p. 15).

The Gaia Collaboration (Nov. 2016). “The Gaia Mission”. In: Astronomy and

Astrophysics 595, A1 (cit. on pp. 100, 124).

— (July 30, 2022). Gaia Data Release 3: Summary of the Content and Survey

Properties. arXiv: 2208.00211 [astro-ph]. URL: http://arxiv.org/

abs/2208.00211 (visited on 08/30/2022). preprint (cit. on pp. 112, 141).

Thomas, Owen, Ritabrata Dutta, Jukka Corander, Samuel Kaski, and Michael U.

Gutmann (Jan. 2021). “Likelihood-Free Inference by Ratio Estimation”. In:

Bayesian Analysis -1 (-1), pp. 1–31 (cit. on pp. 36, 72).

http://www.jstor.org/stable/2245475
https://arxiv.org/abs/1804.06788
https://arxiv.org/abs/2208.00211
http://arxiv.org/abs/2208.00211
http://arxiv.org/abs/2208.00211

BIBLIOGRAPHY 169

Tokuda, Tomoki, Ben Goodrich, I. Van Mechelen, Andrew Gelman, and F.

Tuerlinckx (2011). “Visualizing Distributions of Covariance Matrices”. In:

Columbia Univ., New York, USA, Tech. Rep, pp. 18–18 (cit. on p. 122).

UK Health Security Agency (2022). Reproduction Number (R) and Growth Rate:

Methodology. GOV.UK. URL: https://www.gov.uk/government/publ

ications/reproduction-number-r-and-growth-rate-methodo

logy/ (visited on 02/15/2022) (cit. on p. 53).

Urbut, Sarah M., Gao Wang, Peter Carbonetto, and Matthew Stephens (Jan.

2019). “Flexible Statistical Methods for Estimating and Testing Effects in

Genomic Studies with Multiple Conditions”. In: Nature Genetics 51.1 (1),

pp. 187–195 (cit. on p. 100).

Vandegar, Maxime, Michael Kagan, Antoine Wehenkel, and Gilles Louppe

(Mar. 18, 2021). “Neural Empirical Bayes: Source Distribution Estimation

and Its Applications to Simulation-Based Inference”. In: Proceedings of The

24th International Conference on Artificial Intelligence and Statistics. Interna-

tional Conference on Artificial Intelligence and Statistics, pp. 2107–2115

(cit. on p. 128).

Vehtari, Aki, Andrew Gelman, and Jonah Gabry (Sept. 1, 2017). “Practical

Bayesian Model Evaluation Using Leave-One-out Cross-Validation and

WAIC”. in: Statistics and Computing 27.5, pp. 1413–1432 (cit. on p. 49).

Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-

Christian Bürkner (June 2021). “Rank-Normalization, Folding, and Lo-

calization: An Improved R^ for Assessing Convergence of MCMC (with

Discussion)”. In: Bayesian Analysis 16.2, pp. 667–718 (cit. on pp. 22, 24, 45,

62).

White, Martin, Adam D. Myers, Nicholas P. Ross, David J. Schlegel, Joseph

F. Hennawi, Yue Shen, Ian McGreer, Michael A. Strauss, Adam S. Bolton,

Jo Bovy, X. Fan, Jordi Miralda-Escude, N. Palanque-Delabrouille, I. Paris,

P. Petitjean, D. P. Schneider, M. Viel, David H. Weinberg, Ch. Yeche, I.

Zehavi, K. Pan, S. Snedden, D. Bizyaev, H. Brewington, J. Brinkmann, V.

Malanushenko, E. Malanushenko, D. Oravetz, A. Simmons, A. Sheldon,

and Benjamin A. Weaver (Aug. 1, 2012). “The Clustering of Intermediate-

Redshift Quasars as Measured by the Baryon Oscillation Spectroscopic

Survey: Quasar Clustering”. In: Monthly Notices of the Royal Astronomical

Society 424.2, pp. 933–950 (cit. on p. 100).

https://www.gov.uk/government/publications/reproduction-number-r-and-growth-rate-methodology/
https://www.gov.uk/government/publications/reproduction-number-r-and-growth-rate-methodology/
https://www.gov.uk/government/publications/reproduction-number-r-and-growth-rate-methodology/

BIBLIOGRAPHY 170

Williams, Peter M. (May 1996). “Using Neural Networks to Model Conditional

Multivariate Densities”. In: Neural Computation 8.4, pp. 843–854 (cit. on

p. 108).

Williams, Ronald J. (May 1, 1992). “Simple Statistical Gradient-Following

Algorithms for Connectionist Reinforcement Learning”. In: Machine Learning

8.3, pp. 229–256 (cit. on p. 131).

Wood, Simon N. (Aug. 2010). “Statistical Inference for Noisy Nonlinear Eco-

logical Dynamic Systems”. In: Nature 466.7310 (7310), pp. 1102–1104 (cit. on

p. 33).

Yakut, K., W. Zima, B. Kalomeni, H. Van Winckel, C. Waelkens, P. De Cat, E.

Bauwens, M. Vučković, S. Saesen, L. Le Guillou, M. Parmaksızoğlu, K. Uluç,

I. Khamitov, G. Raskin, and C. Aerts (Aug. 1, 2009). “Close Binary and Other

Variable Stars in the Solar-Age Galactic Open Cluster M 67”. In: Astronomy

& Astrophysics 503.1 (1), pp. 165–176 (cit. on p. 148).

Appendix A

Experimental Details for Chapter 5

A.1 Synthetic Data

For each method, parameter initialisation was done by running a minibatch

variant of the K-means clustering algorithm on the training dataset (Sculley

2010). Component means were set to the cluster location. Component weights

were set to the fraction of datapoints assigned to each cluster. Component

covariances were set to diagonal unit variances.

Each method was run for 20 epochs. For the baseline method using the

existing EM approach, we used the Python interface to the implementation

of Bovy, Hogg, and Roweis 2011 with the default settings.

Both minibatch methods used minibatch sizes of 4096 samples. For the

minibatch-EM method, we used a step size λ of 10−2 For the minibatch-SGD

method, we used a learning rate of 10−3 and the Adam optimiser (Kingma and

Ba 2014).

A.2 Astrometric Data

The following ADQL query was used to retrieve the data from the Gaia archive:

SELECT TOP 2000000

ra , dec , para l lax , pmra , pmdec , ra_error , dec_error ,

p a r a l l a x _ e r r o r , pmra_error , pmdec_error ,

ra_dec_corr , r a _ p a r a l l a x _ c o r r , ra_pmra_corr ,

ra_pmdec_corr , dec_para l lax_corr , dec_pmra_corr ,

171

Appendix A. Experimental Details for Chapter 5 172

dec_pmdec_corr , paral lax_pmra_corr ,

parallax_pmdec_corr , pmra_pmdec_corr

FROM gaiadr3 . gaia_source

WHERE ruwe < 1 . 4

ORDER BY random_index ;

The first 80% of the data was used for training, the next 10% for validation

and the final 10% for testing.

The same minibatch K-means initialisation method was used as for the

synthetic dataset experiment. For the baseline method we used the same

implementation as for the synthetic data experiment with the default settings.

We ran it for 100 epochs.

For both minibatch methods we used minibatch sizes of 4096 samples, with

100 epochs. For the minibatch-EM method, we used an initial step size λ of

10−2, reducing it by a factor of 10 if no improvement in validation log-likelihood

was seen for 10 epochs. For the minibatch-SGD method, we used an initial

learning rate of 10−3 and the Adam optimiser (Kingma and Ba 2014), with the

same reduction criteria as the minibatch-EM method.

Appendix B

Experimental Details for Chapter 6

B.1 Synthetic Datasets

For the experiments using GMMs, we reused the same setup as in Chapter 5,

with mixture components K as mentioned in the main text.

For the prior flow we used multiple transforms of the autoregressive vari-

ant of the Neural Spline Flow applied to a standard normal base distribu-

tion (Durkan, Bekasov, et al. 2019). For the posterior flow we used multiple

transforms of the affine Masked Autoregressive Flow with the noise distribu-

tion as a base distribution (Papamakarios, Pavlakou, and Murray 2017). After

each transform we reversed the ordering of the elements. Both flows used

fully-connected neural networks to parametrise the transforms. We used the

flow implementations from the pyro probabilistic programming library written

in PyTorch along with their framework for variational inference (Bingham

et al. 2019; Paszke et al. 2019).

The posterior flow used a fully-connected neural network as an embedding

network that took the noisy observation and noise covariance as inputs. It

outputted a vector with the same dimensionality as the hidden units, which was

prepended to the inputs of the posterior flow neural networks as a conditioning

input.

We used different numbers of Monte Carlo samples to estimate the loss at

each training step, validation (at the end of every epoch) and final evaluations.

We use the Adam optimiser to perform stochastic gradient descent (Kingma

and Ba 2014). For validation and final evaluation we also used the samples to

compute the IWAE bound to estimate the marginal log-likelihood. Table B.1

173

Appendix B. Experimental Details for Chapter 6 174

Table B.1: Hyperparameter settings used for the flow experiments with synthetic

datasets.

Hyperparameter Value

Learning Rate 5e-4

Minibatch Size 1024

Max Epochs 100

Training Loss Samples 10

Validation Loss Samples 25

Final Loss Samples 100

Embedding Hidden Units 128

Embedding Hidden Layers 3

Posterior Flow Transforms 10

Posterior Flow Hidden Units per Transform 128

Posterior Flow Hidden Layers per Transform 3

Prior Flow Transforms 5

Prior Flow Hidden Units per Transform 64

Prior Flow Hidden Layers per Transform 3

reports the complete hyperparameter settings.

B.2 Gaia Datasets

The following ADQL query was used to retrieve the data from the Gaia archive:

SELECT TOP 20000000

ra , dec , para l lax , pmra , pmdec , phot_g_mean_flux ,

phot_bp_mean_flux , phot_rp_mean_flux , ra_error ,

dec_error , p a r a l l a x _ e r r o r , pmra_error , pmdec_error

, phot_g_mean_flux_error , phot_bp_mean_flux_error ,

phot_rp_mean_flux_error , ra_dec_corr ,

r a _ p a r a l l a x _ c o r r , ra_pmra_corr , ra_pmdec_corr ,

dec_para l lax_corr , dec_pmra_corr , dec_pmdec_corr ,

paral lax_pmra_corr , parallax_pmdec_corr ,

pmra_pmdec_corr

Appendix B. Experimental Details for Chapter 6 175

FROM gaiadr3 . gaia_source

WHERE ruwe < 1 . 4

AND dec > −30.0

AND phot_g_mean_flux IS NOT NULL

AND phot_g_mean_flux < 100000

AND phot_bp_mean_flux IS NOT NULL

AND phot_bp_mean_flux < 50000

AND phot_rp_mean_flux IS NOT NULL

AND phot_rp_mean_flux < 100000

ORDER BY random_index ;

The first 80% of the data was used for training, the next 10% for validation

and the final 10% for testing.

For the experiments using GMMs, we reused the same setup and hyper-

parameters as in Chapter 5. For the astrometric-only experiments, we set the

number of mixture components to K = 128. For the photometric experiments,

we increased the number of mixture components to K = 512.

For experiments using flows, we used the same setup as for the synthetic

data experiments with the hyperparameters in Table B.2.

Appendix B. Experimental Details for Chapter 6 176

Table B.2: Hyperparameter settings used for the flow experiments with the Gaia

datasets.

Hyperparameter Value

Learning Rate 5e-4

Minibatch Size 1024

Max Epochs 100

Training Loss Samples 5

Validation Loss Samples 25

Final Loss Samples 100

Embedding Hidden Units 256

Embedding Hidden Layers 4

Posterior Flow Transforms 10

Posterior Flow Transform Hidden Units 256

Posterior Flow Transform Hidden Layers 3

Prior Flow Transforms 10

Prior Flow Transform Hidden Units 256

Prior Flow Transform Hidden Layers 3

	Introduction
	List of Contributions

	Background
	Bayesian Inference
	Likelihoods
	Priors
	Marginal Likelihood
	Expectations

	Markov Chain Monte Carlo
	Metropolis-Hastings
	Hamiltonian Monte Carlo

	Diagnostics
	Potential Scale Reduction Factor
	Effective Sample Size

	Density Estimation
	Gaussian Mixture Models
	Normalising Flows
	Conditional Density Estimation

	Simulation-Based Inference
	Posterior Estimation
	Likelihood Estimation
	Ratio Estimation

	Bayesian Inference for Ordinary Differential Equations
	Introduction
	Methods
	Likelihood
	Noise

	Prior
	Posterior
	Results
	Posterior Predictions

	Discussion

	Inference for Pileup Processes
	Introduction
	Model
	Posterior
	Prior Choice
	Markov Chain Monte Carlo
	Marginalisation
	Hamiltonian Monte Carlo
	Reparametrisation
	Experiments

	Simulation Based Inference
	Background
	Summary Statistics
	Experiments

	Computational Efficiency
	Censored Data
	MCMC
	SBI
	Comparison

	Line Spectrum
	Discussion
	Accuracy
	Flexibility
	Computational Performance
	Diagnostics
	Conclusion

	Scalable Extreme Deconvolution
	Introduction
	Background
	Expectation-Maximisation

	Methods
	Minibatch Expectation-Maximisation
	Stochastic Gradient Descent

	Experiments
	Synthetic Data
	Gaia Data
	Pitfalls

	Discussion

	Extreme Deconvolution with Variational Inference
	Introduction
	Background
	Theory
	Variational Inference
	Importance Weighting

	Experiments
	Synthetic Data
	Astrometric Gaia Data
	Astrometric and Photometric Gaia Data

	Discussion
	Related Work

	Conclusion
	Bibliography
	Experimental Details for Chapter 5
	Synthetic Data
	Astrometric Data

	Experimental Details for Chapter 6
	Synthetic Datasets
	Gaia Datasets

